The Effects of Climate Change on Oceanic Sonar Use in the Upper European Continental Shelf
The painting on the cover, created using mixed media — oil and digital — depicts this journal’s home campus of McGill University at the foot of Montréal’s Mount Royal. The city-scape, illuminated by the blinding accretion disc of a black hole in the night sky, brings these elusive and distant bodies within reach of scientific and creative minds alike.


Oceanic Sonar
Climate Change
Underwater Acoustics

How to Cite

Farkas, A. (2024). The Effects of Climate Change on Oceanic Sonar Use in the Upper European Continental Shelf. McGill Science Undergraduate Research Journal, 19(1), 19–25.


As the global effects of climate change become more known year by year, it becomes ever-more pertinent to examine the effects this may bring for every aspect of modern life we rely on. One topic of focus is that of multi-frequency sonar communication and navigational systems, which rely on well-established relationships relating to wave speed, signal intensity, and attenuation. We compiled data on oceanic temperature, acidity, and salinity in the Upper European Shelf, which includes the North Sea and Mediterranean Sea, from 2006 to 2072 using the CMIP5 future climate model in the RCP8.5 scenario. We calculate that the speed of sound in the northern European oceanic area will decrease by almost 18 m/s by 2072, with an average yearly decrease in sound speed by 0.37 m/s. The attenuation of sound through water will change year by year, calculated based on a higher-order polynomial regression dependent on the frequency of sonar used. The maximum operating ranges of active low-frequency, mid-frequency, and high-frequency sonar systems would theoretically change by +0.06%, -0.19%, and +0.71%, respectively per year, if no other factors are affected. Due to increased sound propagation, the ambient noise level of the ocean would also increase and have some counter-effect to the increased detection range however that increase in noise level was not quantitatively analyzed in this study.

© The Authors

All rights reserved


Download data is not yet available.