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re-tuning the walker-kasting global carbon cycle 
box model using a parameter sensitivity analysis

aBStraCt

introduction: The Walker-Kasting global carbon cycle box model is a simple representation of the 
earth system used to study climatic events. This model has a high number of parameters whose 
sensitivity must be tested in order to better understand which of them dominate the behaviour 
of the model. In this study, we perform a parameter sensitivity analysis. moreover, we use these 
results to re-tune the model to preindustrial conditions using a quantitative criterion. We then 
compare our results to those determined by Walker-Kasting. Methods: We achieved the parame-
ter sensitivity analysis by calculating, for each parameter, an index that measures the impact of a 
change in the initial parameter value on the equilibrium solutions. The most sensitive parameters 
were determined and then tuned in the model by comparing the model equilibrium solutions to a 
set of 32 experimental values. results: We found that nine of the tuning parameters were sensi-
tive to a change to their initial value. Furthermore, we discovered that 5 of these parameter val-
ues were identical to those determined by Walker-Kasting, thus affirming their work. discussion: 
a sensitivity analysis is interesting to perform because it allows the users of a model to more fully 
comprehend the way in which the model reacts to changes in its parameters. sensitivity analysis 
is fundamental in the tuning of a model (for example, to a particular period in the earth’s history) 
since it allows researchers to consider only the most important parameters.
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intrOdUCtiOn

A box model is a simplified version of a complex system such 
that the components of the system are reduced to linked boxes 
(or reservoirs). Models of this type are employed to simulate pro-
cesses in the climate system in a rudimentary way, and are used 
to determine whether model output satisfactorily describes an 
observed phenomenon. Because they are simple in structure and 
computationally efficient, box models are ideal for analyzing cli-
mate processes that occur on long time scales. In particular, a box 
model of the Earth system depicts the components of the Earth 
system (atmosphere, ocean, terrestrial biosphere, etc.) as boxes 
that are linked by exchanges of mass, energy or both.

In general, box models possess a large number of parameters 
that must be tuned with respect to a set of experimental data. 
This is the case because box models are not inherently based on 
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physical laws, but on parameterizations of those laws. Research-
ers perform such a tuning procedure by determining the set of 
model parameter values that generates the best equilibrium re-
sults (steady state solutions) in terms of a specific criterion, such 
as minimizing the root mean squared error between the model 
and experimental results.

An important element in the development of a box model is 
therefore the determination of which parameters have the great-
est impact on the model equilibrium results. Such a procedure 
must be undertaken since it is computationally unfeasible to run 
a model, even a computationally simple one, for all values of the 
parameter space. Therefore, it is interesting to know which pa-
rameters are the most sensitive since it shows which parameters 
need to be considered with greater accuracy and which param-
eters can be ignored in the tuning process.

In this study, we perform the first sensitivity analysis for the 
Walker-Kasting (1) box model (denoted WK92) and thus deter-
mine the most influential model parameters. These results allow 
us to tune the model to preindustrial conditions using a quan-
titative criterion. Furthermore, we compare our tuning results 
to those of the qualitative approach used by WK92, and discuss 
applications of our sensitivity analysis.

MethOdS

moDel
The preindustrial global carbon cycle is the biogeochemical cycle 
that comprises both: i) the carbon stored within different reser-
voirs of the Earth system and ii) the exchange of carbon between 
these components. The WK92 box model is a simple represen-
tation of the preindustrial global carbon cycle, which consists 
of eight model reservoirs: atmosphere, terrestrial biomass, cold 
surface ocean, warm surface ocean, thermocline, Deep Atlantic 
Ocean, Deep Indian Ocean and Deep Pacific Ocean (Fig. 1). 

The model is governed by 32 ordinary differential equations that 
represent thermohaline (temperature and salinity) fluxes and 
mixing fluxes of carbon and nutrients between the reservoirs, as 
well as biogeochemical processes such as photosynthesis, respira-
tion and the oceanic biological pump, which are biological pro-
cesses that transport carbon from the ocean surface to the deep 
ocean. For each reservoir, the model calculations include: atmo-
spheric CO2 concentration, lysocline depth (the ocean depth be-
low which the rate of dissolution of calcium carbonate increases 
dramatically), average surface air temperature and δ13C for each 
reservoir. Table 1 lists the prognostic variables. Note that δ13C is 
the ratio of the rarer 13C isotope of carbon to the more common 
12C isotope, relative to a generally recognized standard ratio of 

the two. It is an important variable because a change indicates a 
flux of carbon into or out of the system in question. A list of the 
model parameters can be found in Table 2.

sensITIVITY analYsIs
To calculate the sensitivity of the WK92 model parameters, we 
implemented the method described by Nordhaus (2). First, we 
determined an appropriate range for the model parameters un-
der consideration. Each range was defined by a minimum and a 
maximum value (extreme values), and was determined based on 
a literature review of the specific parameter. We then compared 
the equilibrium results of the simulations with the extreme pa-
rameter values to the results with the initial parameter value by 
means of the following sensitivity index:

 

Fig. 1: Schematic of the WK92 model reservoirs (adapted from Dickens, 
1999). Exchanges of carbon internal to the model are represented by blue 
and black arrows. Blue single- and double-headed arrows between the 
ocean reservoirs represent thermohaline and mixing fluxes, respectively. 
Black arrows between the atmosphere and biomass represent respiration 
and photosynthesis, whereas those between the atmosphere and ocean 
reservoirs represent diusive exchanges of carbon. Exchange fluxes external 
to the model are represented by orange arrows. Figure taken from Carozza
(2009)

Table 1: Walker and Kasting (1992) model prognostic variables. PAL = 
preindustrial atmospheric level; 1 PAL = 280 ppmv. In the WK92 model, 
there are six equations for each of P, , and A in the ocean reservoirs and one 
equation for each of TS and [CO2]. In addition, there is one equation for 
MBio, three equations for R in the deep ocean reservoirs and eight equa-
tions for 13C. Note that this adds up to 32 equations.
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 (1)

where Xi
M(t) is the time series of the ith model variable for the 

extreme parameter values, Xi
* is the time series of the ith model 

variable for the initial parameter value, and n is the number of 
points in the time series. Note that the time series of the model 
variable i that is under investigation, Xi

M(t), evolves in time until 
it reaches equilibrium and is thus a function of time. However, 
the time series of the model variable under the initial parameter 
value, Xi

*, is a constant function, since it begins at the equilib-
rium value. The sensitivity index therefore does not only measure 
the difference between the equilibrium values for the initial and 
extreme parameter values, but also the distance between the two 
time series.

The deviation is then normalized by dividing the difference 
Xi

M(t) - Xi
* by Xi

*, so that the quantity in parentheses in Equa-
tion 1 is dimensionless. This normalization allows us to compare 
sensitivity indices for every parameter. The I values were then 
averaged to obtain an extreme sensitivity index I for each param-
eter. To take both the maximum and minimum parameter results 
into account, the two sensitivity indices are averaged. The initial, 
minimum and maximum values for each model parameter, the 
sensitivity indices and the averaged sensitivity index I are given 
in Table 3. The nine most sensitive parameters are presented in 
Figure 2.

Table 2: Model parameters and their description

!

Fig. 2: Averaged sensitivity index I (see table 3) for the nine most sensitive 
model parameters, presented in decreasing order.

Table 3: Initial, minimum, and maximum parameter values and sensitivity 
index 1. The subscripts are the reservoir numbers (Fig. 1)
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parameters (Fig. 2), values between the minimum and maximum 
parameter value were chosen to be part of the tuning process 
(Table 5). The number of values chosen for each parameter, 
which ranged from three to eight, depended on the sensitivity 
of the parameter. Otherwise put, the more sensitive parameters 
required greater accuracy, and thus more values were used for 
their calculation.

Equilibrium runs involving every combination of these chosen 
parameter values were then implemented. This procedure can 
represent a tremendous number of runs and is why only the most 
sensitive parameters were used in the tuning. In our study, we 
performed 408 240 simulations (each running for a period of 
2 million model years with a time-step of 1000 model years) to 
determine the best set of nine tuning parameters. Every set of 
equilibrium variables was compared to the set of experimental 
values using the following cost function:

(2)

where Xei is the ith member of the 32 equilibrium solutions, and 
Xpi is the ith member of the 32 experimentally derived values. 
Again, the function is normalized (the difference Xei − Xpi is 
divided by Xpi) so as to make the quantity in parentheses in (Eq. 
2) dimensionless. A cost, or normalized cumulated root mean 
squared error, was calculated for every set of equilibrium solu-
tions. Finally, the set of equilibrium solutions that had the small-
est cost value was selected as the optimal set of parameter values 
and equilibrium solutions (Table 5).

expeRImenTal DaTa
We reviewed the literature to find experimental preindustrial 
values of the 32 dependent variables. Important sources for ex-
perimental values were Tracers in the Sea by Broecker and Peng 
and Ocean Biogeochemical Dynamics by Sarmiento and Gruber (3, 
4). These texts provided us with the concentration of phosphate, 
alkalinity, the lysocline depth and δ13C values for several of the 
model boxes. Moreover, the World Ocean Circulation Experi-
ment (WOCE) website provided vertical cross section maps of 
the concentration of alkalinity, phosphate, δ13C and total dis-
solved carbon for the Deep Indian Ocean and the thermocline 
(5). Although the WOCE data represents the present day, we 
assume that they are a reasonable representation of these two 
reservoirs in the preindustrial era. The δ13C values for terrestrial 
biomass and the atmosphere were taken from Ruddiman (6). 
We often found plausible ranges of values rather than specific 
results, and therefore selected the value to tune by taking the 

Table 4: Selected proxy values and their sources. The subscripts of the 
variables refer to a specific reservoir (see Fig.1) i.e., P3 refers to phosphate 
in the cold surface water reservoir.

Table 5: Parameters that are to be tuned and their test values. The values in 
bold are the values that were selected during the tuning, i.e., together, these 
values are the combination of parameters that gave the equilibrium solu-
tions that were closest to the experimentally derived values.

Re-tuning the Walker-Kasting global carbon cycle box model using a parameter sensitivity analysis

TunIng
geneRal meThoD
In the original work of WK92, the set of model parameters was 
qualitatively determined by arbitrarily selecting a set of param-
eters and then adjusting those parameters until a reasonable 
match to the experimental results was found. As an application 
to the sensitivity analysis described in the previous section, we 
have re-tuned the WK92 box model using the most sensitive 
model parameters.

The goal of tuning is to determine the parameter values that give 
equilibrium solutions that best reproduce experimentally derived 
values (Table 4). To achieve this, we must first find the experi-
mentally determined values. Based on the nine most sensitive 

√√√√
32∑

i=1

(
Xei − Xpi

Xpi

)2
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average of the maximum and minimum for a given range. Note 
that measurements in the thermocline vary tremendously as it is 
a non-homogeneous layer. The experimentally derived data for 
this reservoir were therefore estimates chosen from the middle of 
the thermocline layer. The 32 experimental values of the model 
variables and the associated references are listed in Table 4.

reSUltS

Figure 2 presents the averaged sensitivity index of the nine most 
sensitive parameters. The most sensitive parameter is RCO. When 
tested from its initial value to its minimum value, we found 
a sensitivity index of 0.67 (Table 3). This implies that the 32 
model variables change by an average factor of 0.67 when RCO 
is changed from its initial value to its minimum. We find that 
other parameters, such as z2 or α, are less sensitive and therefore 
less important since they change the model variables by a smaller 
factor. Some parameters, such as Csurf, have no influence on the 
model equilibrium solutions (Table 3).

Table 4 presents the 32 model prognostic variables, the experi-
mental range of these variables and the selected value applied in 
the tuning procedure. The WK92 parameter values, the values 
examined in the tuning procedure, and the values that were se-
lected from the tuning (bold) are given in Table 5.

diSCUSSiOn 

sensITIVITY
RCO, the parameter that occurs in most of the model equations, is 
more sensitive than the other parameters. Hence, a change in its 
value will affect the model equilibrium solutions more than the 
other parameters, making it the most important tuning param-
eter. In addition, changes in certain parameters exhibit a sensi-
tivity index of zero in equilibrium solutions (Table 3). This result 
can be explained by analyzing the model equations. Considering 
the Csurf parameter, Table 3 indicates that a change in the value of 
Csurf does not influence any of the equilibrium solutions. It does 
not, for example, affect Ts, the average global surface tempera-
ture. The equation relating Csurf and Ts is the following:

 (3)

where the terms in the numerator of the right hand side rep-
resent incoming and outgoing solar radiation, respectively. At 
equilibrium, dTs = 0, and since Csurf is constant, Q − FIR(Ts) must 
be zero. Hence, changing the value of Csurf will not affect the 

equilibrium value of Ts, and accordingly, the sensitivity of Csurf 
with respect to Ts is zero. For this reason, Csurf is not a relevant 
tuning parameter. In a similar manner, the other parameters that 
exhibit a sensitivity index of zero are also not pertinent tuning 
parameters.

Note that for a simulation where carbon is being released into 
the atmosphere, Q−FIR(Ts) is not zero because the amount of 
outgoing solar radiation, FIR(Ts), is changing. In this case, the ar-
gument presented in the previous paragraph is not valid. Choos-
ing two different values of Csurf for the same carbon emission sce-
nario will indeed generate two different evolutions of Ts. Hence, 
although a parameter such as Csurf is irrelevant with respect to 
tuning the model, it is nevertheless important in the evolution 
of a simulation where the model is being forced by a release of 
carbon.

TunIng
We found that five out of the nine most sensitive parameter val-
ues resulting from our tuning procedure were identical to those 
determined by WK92 (Table 5). This is a strong affirmation of 
the parameters determined by WK92. Among the remaining four 
parameters, the difference between the original parameter values 
and those we calculated can be explained by the fact that our 
tuning procedure was more rigorous; it contained significantly 
more model simulations and a greater number of experimentally 
derived values for the dependent variables.

The goal of this study was to perform a sensitivity analysis on 
the parameters of the WK92 carbon cycle box model. The sensi-
tivity analysis allowed us to understand which parameters most 
affected the equilibrium solutions and study how the model re-
acted to a change in parameter values. Furthermore, it permitted 
us to calculate the nine most sensitive parameters, to use this set 
of parameters to quantitatively tune the WK92 model and to 
compare and contrast our tuned parameter results to those origi-
nally determined qualitatively by WK92. In future work, these 
sensitivity results will be used to tune the WK92 box model to 
the Paleocene/Eocene boundary period (approximately 55 mil-
lion years ago) so that it may be used to analyze the Paleocene 
Eocene thermal maximum, a period of abrupt and intense global 
warming (7, 8).
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