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New insights into template-based protein modeling 
techniques

ABSTRACT

Introduction: While the development of genomic sequencing methods has greatly improved the 
efficiency of collecting sequence data, experimental methods to obtain structure information 
have been lagging significantly. In order to elucidate protein structures, researchers have devel-
oped computational structural modeling techniques such as homology modeling and fold rec-
ognition (threading). The general consensus is that homology modeling is a superior approach 
with templates of high sequence similarity to the desired target (>30%), whereas threading is 
better suited for lower (<30%) sequence similarity templates. We compared recently improved 
threading algorithms with homology modeling to test the validity of this consensus. Methods: The 
most current versions of MODELLER and I-TASSER were used for model generation. We then 
used common assessment criteria (N-Dope, Q-mean and PROCHECK) to verify the validity of the 
models. Structure comparisons were also made using Chimera’s Cα root-mean-square devia-
tion. Results: Contrary to our prior expectations, the model determined by threading showed 
similar or even better assessment results in some criteria compared to the model generated 
from homology modeling. Furthermore, the structure analysis showed that homology model-
ing and threading protocols yield models with root-mean-square deviations of under 2 Å when 
used on protein sequences that share sequence identities of at least 30% to the experimentally 
determined protein template. Discussion: We believe that recent improvements in threading 
algorithms will allow for broader applications of this methodology in large-scale modeling efforts. 
The fully automated steps could provide time efficacy. In contrast to popular belief in the model-
ing community, we have shown that threading could be a competitive means of modeling rather 
than a mere backup method.
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Introduction

Determining the structure of a novel protein from its primary 
sequence is vital to many aspects of modern biology. Its applica-
tions range from drug discovery in the pharmaceutical industry 
to enzyme optimization for biotechnological uses in industry (1). 
Due to efforts like the Human Genome Project and improved 
computing capabilities, the potential for molecular modeling to 
produce new biological insights has greatly increased (2). Cur-
rently, there are about 10.5 million protein sequences available 
in Swissprot and TrEMBL, of which the protein structures of 
barely 62,000 have been determined (3, 4).  Protein structural 
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genomics aims to solve one protein structure for each protein 
family. As long as one protein structure is derived experimentally, 
structures of proteins in the same family can be solved using 
computational means (5).

Computational modeling methods are separated into three 
broad approaches: homology modeling, ab-initio, and fold rec-
ognition (threading). Template-based modeling methods, such 
as fold recognition and homology modeling, are the most re-
liable for predicting the structure of a target protein (i.e., the 
protein sequence under study). However, their use is limited by 
the availability of an optimal template, a homologous protein 
(similarity due to common ancestry) with an experimentally 
determined structure (6). Homology modeling predicts protein 
structures based on their sequence similarity to homologous 
proteins with experimentally derived structures. This approach 
stems from the idea that evolutionarily related proteins tend to 
share structural similarities, which enables researchers to pre-
dict the structure of homologous proteins. Regions of conserved 
structure are computationally transferred from the template to 
target model, while the non-conserved regions are usually cal-
culated with respect to favored energy states. Ab-initio, or free 
modeling, relies on basic thermodynamic assumptions but is not 
currently a practical modeling option. Lastly, fold recognition 
depends on limited number of protein structural folds is limited 
in nature. Thus, remote homologues can be identified through 
the shared folds between proteins even if sequence similarity is 
insufficient to identify potential template proteins. Fold recog-
nition consists of placing and aligning the sequence of amino 
acids against a template structure. The software first searches the 
fold database, and the best-fitting fragments are selected. If no 
suitable fold is found in the database, ab-initio is used to build 
that section of the model (7). Consensus in the field of structural 
bioinformatics holds that homology modeling generates models 
that are closer to the native protein structure than fold recogni-
tion. That is, it produces models with lower root-mean-square 
deviation (RMSD) to the native protein structure, and it is the 
preferred approach when sequence similarity to a known tem-
plate ranges from 30-50%. Fold recognition is mainly used when 
sequence similarity drops below 30%, since it can identify targets 
with only fold-level homology (8). 

The modeling efforts described in this paper focus on human 
alpha-fetoprotein (AFP), a 590-amino acid serum protein with 
three domains (stable and autonomously folding regions) (9). 
AFP belongs to the blood plasma protein family, which also 
consists of human serum albumin (HSA), afamin and vitamin 
D-binding protein. It is produced at a high level by the fetal 
liver and yolk sac, but only trace amounts are found in normal 
adults. These background levels of AFP are normally maintained 
throughout the life of an individual except for a transient eleva-

tion in pregnant females. AFP selectively suppresses cell-medi-
ated immunity and promotes cell proliferation (10). Blood levels 
of AFP are also used in pregnant women to detect fetal abnor-
malities such as Down syndrome and neural tube defects (11).

Determining the three dimensional structure of AFP poses 
several challenges for the structural community. The size and 
complexity of the molecule makes it difficult to obtain via re-
combinant DNA methods the amounts needed for x-ray crystal-
lography (12).

However, the availability of experimentally determined HSA 
structures, that are similar in size (585 amino acids) and share 
high sequence identity to AFP, allows for computational mod-
eling of AFP. We used template-based methods of homology 
modeling and fold recognition to build models of AFP based 
on HSA. While the overall sequence of AFP is 40% identical 
to HSA, the actual sequence identities for domains I, II and III 
are 29%, 41% and 48%, respectively (9). Based on the current 
consensus in the field, we expect that homology modeling will 
be most successful for domains II and III since they have the 
highest sequence identity to the HSA template. When sequence 
identity to the template drops below 30%, as is the case for do-
main I of AFP, homology-derived models become inaccurate due 
to sequence misalignment. Consequently, we predict fold recog-
nition will yield a better model for domain I of AFP (13).

Methods

Template-based modeling techniques were applied on a domain-
by-domain basis using the following domain ranges: domain-
I (amino acids 2-192), domain-II (amino acids 193-384) and 
domain-III (amino acids 385-591) (9).

Homology Modeling
Homology modeling depends highly on template identification 
and the quality of the initial alignment. These crucial steps are 
followed by multiple-template modeling using MODELLER 
and subsequent loop-refinement. 

Template Identification
We searched for potential templates in the Protein Data Bank 
(PDB) using the MODELLER script build_profile.py. The script 
identified an HSA template (1N5U) and a vitamin D-binding 
protein template (1KXP). Due to its high sequence similarity to 
AFP, we used the 1N5U template exclusively. For the multiple-
template modeling process, we searched the PDB for another 
HSA template. The difference between the two templates is sug-
gested to be over 2 Å RMSD (14). We therefore selected the HSA 
structure 1AO6, which differs from 1N5U by 4.59 Å.

New insights into template-based protein modeling techniques
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MODELLER
MODELLER is a homology modeling program, which cre-
ates target models by satisfying spatial restraints. Based on the 
alignment information, spatial restraints are derived and target 
models are generated with minimal violation to such restraints. 
MODELLER was chosen due to its reputation as one of the 
best performing modeling software available (13, 15). We used 
Version 9v7 in this experimental protocol. MODELLER uses 
python scripts for each step of the process, including the manual 
refinements. It can be run on both Windows and Mac and is 
available at http://salilab.org/modeller/. 

Multiple-Template Modeling
We aligned template structures using the MODELLER script 
salign_iterative.py. This script incorporates automatic iteration 
of the alignment procedure, rendering the parameter values un-
necessary. The best alignment result based on a scoring function 
is displayed as an output file. We used the script align2d_mult.py 
to align the target sequence onto the template structures, incorpo-
rating both sequence and structure information. We then used the 
model_mult.py script to generate a set of five different models for 
each domain of AFP, resulting in a total of fifteen different models. 

Loop-refinement process
From the pool of generated models, we selected for each domain 
the model with the lowest N-Dope score, and hence the highest 
accuracy. Using DOPE-profiles, which visualize DOPE scores 
per residue as a graph, we chose residues with higher DOPE 
scores for the loop-refinement process. Loop regions occur where 
no conservation is found in the target-template sequence align-
ment; no conserved structures can be adopted from the template 
protein structure. For such regions, MODELLER enables ab-
initio refinement using the script loop_refine.py, which gives a 
number of independently generated alternative loop conforma-
tions. The loop conformation with the lowest energy state is se-
lected based on the n-DOPE scores.

Fold Recognition
Automated Server Selection
The most recent (2008) Critical Assessment of Techniques for 
Protein Structure Prediction (CASP) study formed the basis 
for the selection of automated threading servers. Using a dou-
ble-blind approach, organizers make available to the structure 
prediction community sequences for which the crystallographic 
structure will be solved in the next few months, and they are 
challenged to make predictions of these targets. The study se-
lected I-TASSER as the best automated prediction server. In ad-
dition, the large repository of published material on this server 
and its widespread use by the structural community ultimately 
led us to select it for this experiment.

I-TASSER
The target protein sequence is submitted along with an e-mail 
address to which the results will be sent. I-TASSER performs 
profile-profile searching of the PDB using the statistical profiles 
for sequences based on their tendency to mutate at each posi-
tion. This enables broader detection of remote homologues that 
cannot be identified through mere sequence based searches (16). 
Aligned fragments are then assembled with unaligned fragments, 
which are built by means of ab-initio. The simulation built from 
this first round is then used by the program in an iterative step 
that further refines the model and chooses the model with lowest 
energy conformation as the final output. I-TASSER is available 
at http://zhang.bioinformatics.ku.edu/I-TASSER/.

Structure Comparison and Visualiza-
tion
To compare the models that were built using homology model-
ing and fold recognition, we created structural alignments using 
the MODELLER script salign_iterative.py. We then imported 
the output alignment file in .ali format into Chimera in order to 
match the alignment onto three dimensional protein structures. 
Chimera was chosen for visualization since it allows for simple 
importing of the alignment file, rendering manual adjustments 
unnecessary. From the imported alignment information, Chi-
mera calculated the Cα root-mean-square deviation (RMSD) 
between the two structures.

Final Assessment Step
Following model generation, we used N-DOPE, Q-mean and 
PROCHECK as quality assessment criteria. To simplify the pro-
cedure, we used N-DOPE scores to choose the best models for 
each domain. We then performed Q-mean and PROCHECK 
assessments upon this selection of top models in order to con-
firm their quality (17). 

n-DOPE
N-Dope is derived from the original DOPE score, which is a sta-
tistical potential means used to quantify model accuracy. DOPE 
scores are not normalized with respect to protein size and have 
an abstract scale, so they cannot be used to make comparisons 
between different models. To allow for comparisons, normalized 
N-Dope scores are used. Lower values are indicative of higher 
accuracy (14).

Q-mean
Q-mean is a combination of five different statistical potentials 
enabling both global and local structural quality assessment. It is 
a relatively new assessment web server, which stresses combining 
several independent quality measures into one score. The web 
server is available at http://swissmodel.expasy.org/qmean.
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PROCHECK
PROCHECK assesses a protein model’s stereochemistry, includ-
ing its symmetry, geometry and packing quality (13). Among the 
many outputs that are given by PROCHECK, Ramachandran 
plots were the most utilized for our purposes. Each residue is 
arranged according to their stability; stable and accurate models 
are expected to have over 90% of their residues fall under the 
most favored region of the plot. PROCHECK scripts can be ob-
tained by downloading PROCHECK-NT from http://ruppweb.
dyndns.org/ftp_warning.html.

Results

The assessment methods allowed us to obtain reference scores 
to which the generated models are compared. Table 1 describes 
the templates used. The assessment results performed on 1N5U 
are listed in Table 2. As expected, the 1N5U domain structures 
determined by x-ray crystallography yielded scores indicative of 
a native protein. This was confirmed by the three quality mea-
surements. 

Using homology modeling, AFP domain models were generated 
based on the 1AO6 and 1N5U templates. After the loop-refine-
ment step, the energy profile was rendered more favorable, as evi-
denced by the N-Dope scores recorded in Table 3. This supports 
the idea that refinement steps, albeit requiring manual interven-
tion, can improve the model quality significantly. Although all 

ID Resolution (Å) Name

1AO6 2.50 crystal structure of human serum 
albumin

1N5U 1.90 study of human serum albumin 
complexed with heme

1GNI 2.40 serum albumin complexed with oleic 
acid

Table 1. Human serum albumin structures that have been incorporated in 
template-based modeling

Table 2. Model assessment control results

Table 3. Improvement of the AFP domain models from homology model-
ing after refinement step

The summary of each structure including resolution and its identification 
within the PDB database has been recorded. Homology modeling was per-
formed using 1AO6 and 1N5U while fold recognition used 1N5U.

As a control, the 1N5U serum albumin structure was analyzed using the 
three assessment criteria; namely, N-DOPE, Q-mean, and PROCHECK. 
All domains of 1N5U obtained scores that confirm their stable tertiary struc-
ture, which is expected since each domain was experimentally determined.

The N-DOPE scores of the domain models before and after the refine-
ment step have been recorded. The scores confirm that the refinement has 
improved the relative accuracy of the models, which was quantified using 
N-DOPE. The corresponding changes in the DOPE-profile can be seen 
in FIGURE 1.

N-DOPE Qmean PROCHECK

Domain-I -1.824 0.721 91.9%

Domain-II -1.759 0.698 95.0%

Domain-III -1.517 0.666 92.6%

Before refinement After refinement

Domain-I -0.838 -1.059

Domain-II -1.481 -1.611

Domain-III -0.745 -0.873

N-DOPE Qmean PROCHECK

Homology

Modeling

Fold

Recognition

Homology

Modeling

Fold

Recognition

Homology

Modeling

Fold

Recognition

Domain-I -1.059 -1.039 0.603 0.608 93.1% 93.0%

Domain-II -1.611 -1.671 0.611 0.599 91.0% 91.0%

Domain-III -0.873 -1.083 0.630 95.2% 95.2% 96.0%

Table 4. Assessment results for AFP domain models

The results for fold recognition generated models show slightly higher ac-
curacy compared to the models from homology modeling although they are 
not as accurate as the experimentally determined structures. These results 
show that fold recognition was able to obtain models with similar or slightly 
higher accuracy to those of homology modeling.

Fig. 1. RMSD measurements between the domain models made by homol-
ogy modeling and fold recognition. The RMSD measurements have been 
utilized in order to quantify the similarity between the domain structures 
made in two different approaches. Yellow frame indicates homology-model-
ing model, while green indicates fold recognition model.
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three domains had N-DOPE scores less than zero, the domain 
II model has the highest relative accuracy based on N-DOPE 
scores. Q-mean and PROCHECK values, summarized in Table 
4, also confirm that the generated models are within the accept-
able range (see Methods for explanation), although the scores are 
shown to be less accurate than those of the control.

Table 4 summarizes the results obtained using fold recognition. 
I-TASSER selected 1GNI as the most suitable template, and the 
resulting models were subjected to the three assessment meth-
ods. Like in homology modeling, the N-DOPE scores obtained 
with I-TASSER were best for domain II, suggesting that domain 
II models were more accurate than those of domain I or domain 
III. Also, the N-DOPE scores obtained from fold recognition 
for domains II and III were more accurate than those obtained 
via homology modeling.

The overlay between homology and fold recognition models is 
shown in Fig. 1 along with the images of overlaid domain struc-
tures. All RMSD measures are below 2 Å, with domain II struc-
tures being the most similar. 

Discussion

Generating models of AFP allows for a comparative analysis of fold 
recognition and homology modeling. Our results challenge several 
key assumptions about these two techniques. The current consensus 
in structural bioinformatics is that homology modeling yields 
more accurate models than fold recognition.  However, the as-
sessment data we generated for these models indicate that both are 
capable of developing highly accurate models in the range of low 
to medium resolution x-ray crystallographic structures (Table 4). 

The prevailing assumptions regarding the accuracy of both ho-
mology modeling and fold recognition must be revisited. The 
consensus is that fold recognition models often have a RMSD 
of 2-6 Å, with errors mainly occurring in the loop regions (8), 
while those of homology modeling often approach RMSD of 
1-2 Å (18). This dogma was established some fifteen years ago, at 
a time when both of these techniques were still quite basic and 
unrefined. We do not dispute that for much of the last decade 
homology modeling has been the more accurate and preferred 
method of computational modeling when a template exists with 
sequence similarities above 30%. However, new algorithms have 
enabled the latest generation of fold recognition servers to gen-
erate models with accuracies that rival or surpass those of ho-
mology modeling. This result runs counter to the basic view in 
much of the published literature, and suggests a change in the 
assumptions regarding the accuracy of certain computational 
modeling techniques (19).

This paradigm shift first became apparent when I-TASSER gen-
erated the best 3D structure in CASP 7 in the automated server 
section (6, 20). Two main factors contributed to the success of 
I-TASSER in this and subsequent competitions. First, an im-
proved template refinement process that uses iteration was in-
troduced, which reduces the RMSD by approximately 1 Å in the 
aligned regions (20). Furthermore, incorporating the refinement 
step with iteration skips the manual refinement step usually re-
quired during homology modeling. Unlike manual refinement, 
which is performed during homology modeling, I-TASSER’s 
automated refinement ensures the same strict calculations and 
algorithms will be applied every time, making the process ho-
mogeneous. Secondly, the use of consensus target-template 
alignments (meta-server approach) by fold recognition software, 
including I-TASSER, greatly improves model generating capa-
bilities. Consequently, the line between fold recognition and ho-
mology modeling has begun to blur. 

The most recent CASP studies as well as our modeling work 
on AFP clearly provide evidence for fold recognition’s ability to 
serve as a viable modeling method, even when sequences share 
over 30% similarity to known templates. Ideally, when attempt-
ing to model proteins with sequences that are 30-50% similar to 
known templates, researchers are encouraged to utilize both ho-
mology modeling and fold recognition approaches. This way, the 
results generated may be compared to each other, and the most 
reliable models can be selected. However, if time constraints 
must be considered, we feel that fold recognition, due to its rapid 
and user-friendly nature, may be used exclusively to generate 
models within the same range of accuracy as those made using a 
homology approach.

While researchers have greatly improved fold recognition serv-
ers, it is important to note that due to their automated protocols, 
bioinformaticians are unable to modulate the level of refinement, 
and thus the quality, of the resulting model. A novel and po-
tentially timesaving approach would be to generate initial mod-
els using fold recognition with subsequent manual refinements 
using MODELLER. In order to achieve the daunting task of 
modeling all of the deposited sequences, we believe large-scale 
structural genomics projects should focus mainly on fold rec-
ognition approaches due to their rapid, automated protocols. 
Although homology modeling can provide viable models, the 
manual refinement steps require human intervention, thus mak-
ing this technique impractical for large-scale structural genomic 
projects. New experimental protocols based on initial fold rec-
ognition and subsequent model refinements with MODELLER 
may allow structural genomic projects to elucidate the vast num-
ber of protein sequences yet to be determined. 
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