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The Evolution of Algorithms to find Prime Numbers
Maya Kaczorowski

Introduction
Prime numbers, and the deterministic formulas used to find them, 
have garnered considerable attention from mathematicians, pro-
fessionals and amateurs alike. A prime number is a positive integer, 
excluding 1, whose only divisors are 1 and itself. For example, 23 is 
a prime number as it can only be divided by 1 and 23. A number 
that is not prime is called a composite number.

While prime numbers under 100 are fairly abundant, 
they become less frequent and difficult to find in a systematic 
manner as the digits in the number increase since they do not 
appear to follow a predictable distribution. So why do resear-
chers keep studying them? For over 150 years, mathematicians 
have attempted to uncover a deterministic formula to identify 
prime numbers. If such a formula existed, all numbers could 
be factored relatively quickly using computers. Paradoxically, 
much of electronic data today is encrypted by taking advanta-
ge of the fact that it is difficult and time consuming for a com-
puter program to factor a large composite number. A formula 
to find all prime numbers would be a significant breakthrough 
in mathematics, but severely detrimental to data security.

A simple algorithm to find prime numbers: 
The Sieve of Eratosthenes
As early as 200 BCE, in their efforts to determine the first few 
prime numbers, Greek mathematicians developed an algo-
rithm requiring relatively easy calculations. All integer numbers 
greater than 1 can be uniquely factored as a product of prime 
numbers; this is the Fundamental Theorem of Arithmetic (An-
drews, 1994). Consequently, it is a corollary that any composite 
number must have at least one factor smaller than or equal to 
its square root. For example, consider the factorization of 118: 
118=2•59, and the factor 2 is less than 10.86=√118.

Since all composite numbers have prime factors smaller 
than or equal to their square roots, it follows that prime num-
bers, which cannot be factored, do not. This idea prompted the 
Ancient Greek mathematician Eratosthenes to conceive of the 
Sieve of Eratosthenes to find small prime numbers (Ore, 1988). 
In order to find prime numbers less than 100, for instance, Era-
tosthenes would remove all factors of 2; then all factors of 3; 
then since 4 is not a prime, having already been removed as 
factors of 2, remove all factors of 5; etc. as seen in Figure 1.

The Sieve of Eratosthenes is an example of a deterministic 
algorithm used to unearth all prime numbers, but is only prac-
tical for “small” prime numbers, those less than 10,000,000 (Ore, 
1988). Beyond that boundary, it is too resource-consuming for 
a computer to perform such a calculation.

The sporadic, but never-ending, primes: 
the Prime Number Theorem and the Infinity of Primes

Even though the Sieve of Eratosthenes offers an effective 
algorithm for finding small prime numbers, it gives little insight 
into the distribution of prime numbers. Carl Friedrich Gauss 
was the first to notice the only clear distributive property of 
prime numbers: they get scarcer as numbers get larger. Among 

the first 10 integers, 40% are prime; among the first 100, 1 in 4 
is prime. This pattern continues, such that in the first 100,000 
integers, 1 in 10.4 is prime (Peterson, 1996). In fact, Gauss wrote 
that “this frequency is on the average inversely proportional to 
the [natural] logarithm” (Tschinkel, 2006), so the approximate 
number of primes below a number n follows Equation(1):

The French mathematician Adrien Marie Legendre inde-
pendently developed a similar equation just a few years la-
ter. The result is known as the Prime Number Theorem, which 
while giving no definitive equation to find prime numbers, pro-
vides an approximation of the distance between prime num-
bers within any given interval. In fact, it states that the average 
distance between two consecutive primes near some number 
n is close to the natural logarithm of n (Peterson, 1996). For 
example, since ln(1000)=6.91, near 1000, approximately every 
seventh number should be prime.

As the density of prime numbers decreases, it might be ex-
pected that eventually prime numbers get so scarce that there 
exists a single largest prime number. However, the infinitude 
of prime numbers has been known since 300 BCE when it was 
established in Euclid’s Elements. Euclid’s proof hinges on the 
Fundamental Theorem of Arithmetic: if there is a single largest 
prime number, there would be a finite set of prime numbers. 
This theorem implies that all composite numbers could then 
be factored into these prime numbers. However, Euclid found a 
number that could not be divided by any of these prime num-
bers, thus necessitating the existence of another prime num-
ber (Ore, 1988). By induction, prime numbers are thus infinite. 
For a concise proof and examples, see Figure 2.

Despite providing insight into the distribution of prime num-
bers over the real number line, the Prime Number Theorem did not 
contribute to creating a definitive formula to find prime numbers.

Finding a faster algorithm: Euler's formula, the Riemann 
hypothesis, and a polynomial-time algorithm
Although the Sieve of Eratosthenes is a foolproof method to find prime 
numbers, this primitive algorithm is very time consuming, and mathe-
maticians have devoted their efforts to finding a faster method.

Leonhard Euler spent many years working on a deterministic 
formula for finding prime numbers and eventually developed the 
equation seen in Equation 2. However, this equation only works 
for restricted inputs and does not determine consecutive prime 
numbers, meaning that its use as a test of primality is limited.
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Prime numbers are what is left when you have taken all the patterns away. I think 
prime numbers are like life. They are very logical but you could never work out 

the rules, even if you spent all your time thinking about them.
- Mark Haddon, The Curious Incident of the Dog in the Night-time

Equation 2:  Euler’s prime generating function

Equation 1:  Gauss’ equation of the distribution of prime numbers
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The use of prime numbers in Cryptography and the conse-
quences of a deterministic formula for finding prime numbers
Cryptography, the science of encrypting and decrypting mes-
sages for transmission between a sender and an intended re-
cipient, may at first glance seem unrelated to the discovery of 
prime numbers. Beginning in Roman times, information was 
frequently encrypted using a private-key, meaning that the 
sender and the recipient had to define a decryption codec that 
would allow the recipient to decode the message. This practice 
became impractical as technology evolved, since there was of-
ten no secure way to communicate the private-key, especially 
over considerable distances. To deal with these challenges, 
public-key cryptography was developed. Presently, the most 
common encryption methods in use rely on the difficulty of 
efficiently finding prime numbers.

Whereas prime numbers are known up to several thou-
sands of digits, it is much harder to factor composite numbers 
with several thousands of digits, especially if they are com-
posed of large prime numbers; a deterministic exponential 
time algorithm could take centuries to factor the composite 
number. This is the basis of public-key cryptography using 
the RSA encryption method created in 1978 by Rivest, Shamir 
and Adleman. Two large prime numbers p and q decide a lar-
ge composite number N=pq as well as the encryption key e 
using an equation. From p, q and e, the decryption key d is de-
termined by the same equation. An individual who wants to 
receive information securely makes public N and e, allowing 
anyone to send them the information. If the information is 
intercepted, then knowledge of d, which can only be deter-
mined if p, q and e are known, is required for decryption. This 
means that in order to decrypt the intercepted information, 
the individual, who only knows N and e, must factor N back 
into p and q, which is a restrictively time consuming process. 
On the other hand, if prime numbers could be found quic-
kly, then composite numbers could be factored much more 
swiftly, and the RSA method would fail, rendering electronic 
public-key encryption insecure.

A similar threat to secure encryption is quantum computing, 
which is based on the principle that quantum properties could 
be used to represent data and perform operations as a traditional 
computer does. If quantum computing evolves beyond the experi-
mental stages where it currently is, it presents the possibility of per-
forming computations in record time. The same algorithms could 
be used, but would be executed much faster. For example, while it 
may take centuries to break an RSA code using a traditional compu-
ter, a quantum computer could take just seconds or minutes.

Euler also developed the zeta function, relating a sum 
of fractions to a product of prime numbers, shown in Figure 
3.  Bernhard Riemann extended it into what is now known 
as the Riemann Zeta function (Ivic, 2003). In 1859 Riemann 
published his results and hypothesized that a function that 
has a zero root uniquely defines a prime number. Recently, 
in 2004, Gourdon and Sebah verified the Riemann hypothe-
sis for the first 10 trillion zeroes (Crandall and Pomerance, 
2005); nevertheless, the hypothesis remains unproven.

The discovery of prime numbers is simplified by com-
puter programs, where the main challenge is finding a more 
rapid algorithm. Computer algorithms are usually compa-
red using runtime analysis, which determines the worse 
case runtime given an input of length n. The runtime of a 
program is a function of the length of the input, and can be 
a polynomial, logarithmic or exponential equation. As the 
input size increases, an exponential runtime will always be 
longer than a polynomial runtime, which in turn will be lon-
ger than a logarithmic runtime.

The Sieve of Eratosthenes is an exponential algorithm to 
find prime numbers, which renders it ineffective in finding 
exceptionally large prime numbers. Since Eratosthenes, all 
deterministic algorithms to find primes have been exponen-
tial, so it was remarkable when a relatively simple determi-
nistic polynomial algorithm was finally discovered in 2002 by 
Agrawal, Kayal and Saxena (AKS). The AKS algorithm, based 
on Fermat’s Little Theorem and other proven mathematical 
assumptions, is an improvement but may still have an extre-
mely long runtime, rendering it impractical. The search for an 
expeditious yet deterministic formula to find prime numbers 
is still underway, and there is no doubt that computers will 
continue to provide mathematicians with the ability to make 
further improvements.

Figure 1:  The Sieve of Eratosthenes Figure 1:  The Riemann-Zeta function

Figure 2:  Short proof of the infinitude of prime numbers
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Conclusion
The field of prime numbers is ever changing, with new prime 
numbers discovered every few years. Early mathematicians 
dealt with the distribution and infinitude of prime numbers, 
whereas modern mathematicians aspire to find a determi-
nistic formula to identify all prime numbers. Algorithms that 
quickly generate small prime numbers already exist, and the 
recent AKS polynomial time algorithm will even allow large 
prime numbers to be found quickly. Although finding prime 
numbers with ease would be a seminal accomplishment in 
mathematics, it would also create new challenges for the 
safety of electronic data encryption. Are the benefits of a 
deterministic prime generator to mathematics worth the 
destruction of the most common form of data encryption in 
computer science? Only time will tell.
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