
Volume 16 | Issue 1 | April 2021 Page 57

Submitted: 12/12/20

Research Article
Department of Physics, McGill
University, Montreal QC H3A
2T8, Canada

Keywords
Hochschild cohomology,
Frobenius algebras, 3-manifolds,
cohomology algebra

Email Correspondence
qiu.s.wang@mail.mcgill.ca

Qiu Shi Wang1

Hochschild Cohomology of the Cohomology
Algebra of Closed Orientable Three-
Manifolds
Abstract

Let F be a field of characteristic other than 2. We show that the zeroth Hochschild cohomology vector space
HH0(A) of a degree 3 graded commutative Frobenius F-algebra A = ⊕iA

i, where we will always assume
A0 ∼= F, is isomorphic to the direct sumof the degree 0, 2 and 3 graded components and the kernel of a certain
natural evaluationmap ιµ : A1 → Λ2(A1). In particular, this holds forA = H∗(M ;F) the cohomology algebra
of a closed orientable 3-manifoldM .

In TheoremA of [1], Charette proves the vanishing of a certain discriminant∆ associated to a closed orientable
3-manifold L with vanishing cup product 3-form. It turns out that if we could show thatHH2,−2(A) = 0 for
A = H∗(L;C), we would have found a more elementary proof of this part of Charette’s theorem. We show
that for any β ≥ 3, the degree 3 graded commutative Frobenius algebra A with µA = 0 and dim(A1) = β
satisfiesHH2,−2(A) �= 0. Thus Charette’s theorem is not simplified.

1 Introduction

Overview of the problems

We first introduce the problem without defining the mathematical objects
involved. The definitions will be provided in further sections of the text,
with references.

To any F-algebra A we can associate the Hochschild cohomology
HH∗(A;A). If A is a graded algebra, then it also has a bigraded version
HH∗,∗(A;A) defined in (2.4). In this text we will always use coefficients
in A, so we omit it and write HH∗(A) and HH∗,∗(A).

The cohomology algebra of a closed orientable 3-manifold is a degree 3
graded commutative Frobenius algebra with zeroth graded component of
dimension 1. Aswe are interested in characterizing the cohomology algebra
of such manifolds, we restrict our study to the above-mentioned type of
algebra.

We are interested in answering the following two questions:

• Question 1: Let A be a degree 3 graded commutative Frobenius al-
gebra with A0 ∼= F. Can we compute HH∗(A) and HH∗,∗(A) in
terms of its 3-form µA and dim(A2)?

• Question 2: In particular, if µA = 0, is HH2,−2(A) necessarily
zero?

Main results

We give a limited partial answer to Question 1. As the computational com-
plexity of calculating HHn(A) is of O(en), brute force calculation us-
ing a computer is infeasible. However, we can still characterize HH0(A).
Define the 3-form of A to be the map µA : A1 × A1 × A1 → F by
µA(x, y, z) = σ(xy, z) where σ is the Frobenius form of A. Define the
map ιµ : A1 → Λ2(A1) by ιµ(x) = µA(x, ·, ·). Then our first main result
is:

Theorem 1. Let F be a field of characteristic other than 2 and let A be a
graded commutative Frobenius F-algebra of degree 3, with graded compo-

nentsA0, A1, A2 andA3 such thatA0 ∼= F. Then

HH0(A) ∼= A0 ⊕ ker(ιµ)⊕A2 ⊕A3 ∼= F2+dimA2

⊕ ker(ιµ).

Note that dim(A1) = dim(A2). Our secondmain result answers Question
2 in the negative.

Theorem 2. Let F be a field of characteristic other than 2 and let β ≥ 3 be
an integer. Then the unique degree 3 graded commutative Frobenius algebra
A = ⊕iA

i withA0 ∼= F such that dimF(A
1) = β and µA = 0 satisfies

HH2,−2(A) �= 0.

Motivation and significance

Recall that for any closed orientable 3-manifold M , we have H3(M ;F) ∼=
F by Poincaré duality. We can define an antisymmetric 3-form using the
cup product:

µM : H1(M ;F)×H1(M ;F)×H1(M ;F) → H3(M ;F) ∼= F.

Together with Poincaré duality, µM uniquely determines the cohomology
algebraH∗(M ;F) ≡ A, a degree 3 graded commutative Frobenius algebra
with 3-formµA = µM . Thus,Theorem 1 provides a characterization of the
zeroth Hochschild cohomology of the cohomology F-algebra of a closed
orientable 3-manifold in terms of its cup product 3-form µM .

Another motivation for our work on degree 3 graded commutative Frobe-
nius algebras is the following result due to Sullivan:

Theorem 3 (Sullivan [2]). Let µ be an integral antisymmetric 3-form on a
free abelian group H of finite rank. Then there exists a closed orientable 3-
manifoldM such that µ is the cup product 3-form ofM andH1(M ;Z) =
H .

However, Sullivan’s theorem is not necessarily true for an arbitrary 3-form
on a finite-dimensional F-vector space, and thus not every Frobenius alge-
bra we consider may be realized by a manifold.

In Theorem A of [1], Charette proves the vanishing of a discriminant ∆
associated to a closed orientable Lagrangian 3-manifold L with vanishing
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cup product 3-form µL by using holomorphic curve techniques. It turns
out that∆ is the discriminant of a quadratic form in the image of amapΘ :
HH2,−2(H∗(L;C)) → Q2(H1(L;C);C) from HH2,−2 to the space of
complex valued quadratic forms on the first cohomology group ofL. Then,
one can ask if there is amore elementary proof that∆ vanishes, for example
by showing that HH2,−2 = 0 for any L with µL = 0. This is precisely
Question 1, to which Theorem 2 answers in the negative. Thus Charette’s
proof is not simplified. More details can be found in section 2.5.

2 Background

2.1 Graded commutative Frobenius algebras

Let F be a field. We recall the following definitions.

An F-algebra A is said to be graded if it can be decomposed into a direct
sum A = ⊕∞

n=0A
n such that ApAq ⊂ Ap+q . The highest n for which

An �= 0, if it exists, is the degree of the graded algebra. An algebra is said to
be graded commutative if it is graded and also, for xp ∈ Ap and xq ∈ Aq ,
we have

xpxq = (−1)pqxqxp. (2.1)
We define a graded commutative Frobenius algebra as an associative finite-
dimensional unital graded commutative algebra A = ⊕n

i=0A
i equipped

with a nondegenerate bilinear form σ : A×A → F satisfying σ(xy, z) =
σ(x, yz) for all x, y, z ∈ A. We require σ, the Frobenius form of A, to be
consistent with the grading ofA in the sense that σ|Ai×Aj is the zero map
whenever i+ j �= n. Note that the unit of the algebra is in A0.

Throughout this article we will only consider degreen graded commutative
Frobenius algebrasA = ⊕n

p=0A
p such thatA0 ∼= F. For n = 3, we define

the 3-form ofA to be the map µA : A1 ×A1 ×A1 → F sending (x, y, z)
to σ(xy, z). The proof of a version of the following useful proposition can
be found in [3, Section 10.2].
Proposition 1. Given a basis {x1, · · · , xb} for Ap, there is a basis
{x1, · · · , xb} forAn−p dual to it in the sense that σ(xi, xj) = δij .

2.2 Cohomology algebra of closed orientable 3-manifolds

The following results from elementary homology theory can be found in
any introductory textbook in algebraic topology, notably [4] and [5]. They
show that Theorems 1 and 2 apply to cohomology algebras of closed ori-
entable 3-manifolds.

For an abelian coefficient group G, the singular cohomology functors
Hi : Top → Ab take a topological space X to its cohomology groups
Hi(X;G). By Poincaré duality, we know that for a closed orientable 3-
manifold M and F a coefficients field, H0(M ;F) ∼= H3(M ;F) ∼= F
and H1(M ;F) ∼= H2(M ;F) ∼= Fβ , where β is the first Betti num-
ber of M . We have Hi(M ;F) = 0 for i < 0 or i ≥ 4. The vec-
tor space H∗(M ;F) =

⊕
i H

i(M ;F), together with the cup product
⌣: Hi(M ;F) × Hj(M ;F) → Hi+j(M ;F), forms the cohomology al-
gebra ofM with coefficients in F. The cup product is graded commutative,
that is, for xp ∈ Hp(M ;F) and xq ∈ Hq(M ;F), it satisfies (2.1).

Choose an orientation forM and let [M ] ∈ Hn(M ;F) be the correspond-
ing fundamental class. We will need the following consequence of Poincaré
duality:
Theorem4. For a field F andMn a closed and orientable manifold, the map

φ : Hp(M ;F) → HomF(H
n−p(M ;F),F)

taking α �→ α where α(x) = (α ⌣ x)([M ]), is an isomorphism. Equiva-
lently, there is a nondegenerate pairing

Hp(M ;F)×Hn−p(M ;F) ⟨ , ⟩−−→ F

sending (a, b) �→ φ(a)(b) = (a ⌣ b)([M ]). Therefore, the algebra
H∗(M ;F) is a degree n graded commutative Frobenius algebra with Frobe-
nius form σ(a, b) = 〈a, b〉.

Now letn = 3. If we choose the basis{e} ofH3(M ;F) such that e([M ]) =
1 ∈ F, we get that xi ⌣ xj = δije for xi and xj from Proposition 1. The
latter Proposition notably implies that any nonzero element x ∈ A1 has a
dual x∗ ∈ A2 such that xx∗ = e.

We define themultilinearmapµM : A1×A1×A1 → F byµM (x, y, z) =
(x ⌣ y ⌣ z)([M ]). Then, (2.1) for i = j = 1 gives us that µM is
an alternating 3-form. In the above basis, if x ⌣ y ⌣ z = ηe, then
µM (x, y, z) = η.
Proposition 2. The 3-form µM and Poincaré duality determine the cup
productA1 ×A1 → A2.

Proof. Take n = 3 and p = 2 in Theorem 4. To each α, β ∈ A1 corre-
sponds an element of HomF(A

1,F) defined by sending x �→ µ(α, β, x).
Thus α ⌣ β ∈ A2 is φ−1(µ(α, β, ·)). ■

In the basis for A1 of Proposition 1 (for n = 3 and p = 1), an arbitrary
3-form can be written as, for scalars aijk ∈ F,

µ =
∑

i<j<k

aijkdx
i ∧ dxj ∧ dxk. (2.2)

In the above basis, we have the formula xi ⌣ xj =
∑

k aijkxk ∈ A2,
justified by Proposition 2.2.

Define the evaluation map ιµ : A1 → Λ2(A1) by ιµ(x) = µ(x, ·, ·).
Example 1. The 3-torus T = S1 × S1 × S1 has first Betti number 3 and
three-form µT = dx1 ∧ dx2 ∧ dx3. Its cohomology algebra is then the
exterior algebra Λ3(F), and as a result ker(ιµ) = {0}.
Example 2. Let M = #β(S1 × S2), the connected sum of β copies of
S1 × S2. The Künneth formula, which can be found in [5, Section 3.2]
for example, gives us an isomorphism H∗(S1 × S2;F) ∼= H∗(S1;F) ⊗
H∗(S2;F). This gives us H1(S1 × S2;F) ∼= H2(S1 × S2;F) ∼= F. Sup-
pose a generates H1 and b generates H2. Then a ⌣ b generates H3. It is
standard to show that taking the connected sum preserves the cup product
structure on each copy of S1 × S2 and sets cup products of cohomology
classes from different copies to 0; see for example [4, Chapter VI, Section
9]. This results in the cup product onH1(M ;F) ∼= Fβ being trivial, giving
µM = 0 and thus ιµ = 0 and ker(ιµ) = A1.

2.3 Hochschild cohomology

For a field F, Hochschild cohomology associates a sequence of F-vector
spaces HHi(A) to an F-algebra A. In Hochschild’s original paper [6], the
Hochschild chain complex of A with coefficients in A are defined as

CCk(A) = HomF(A
⊗k, A)

where A⊗k is the tensor product of A with itself k times and A⊗0 = F.
They are equipped with the differential d : CCk(A) → CCk+1(A) de-
fined by the following formula, for f ∈ CCk(A):

df(a1 ⊗ · · · ⊗ ak+1) = a1f(a2 ⊗ · · · ⊗ ak+1)

+

k∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak+1) (2.3)

+(−1)k+1f(a1 ⊗ · · · ⊗ ak)ak+1.

For the k = 0 case, we have df(a1) = a1f(1)− f(1)a1.

The proof of the following proposition is a tedious calculation that will be
omitted. It can be found in [6].
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Proposition 3. d2 = 0.

Thus we can define the n-th Hochschild cohomology of A (with coefficients
in A) as

HHn(A) =
ker(d : CCn(A) → CCn+1(A))

im(d : CCn−1(A) → CCn(A))
.

Note that for n ≤ −1, HHn(A) = 0.

2.4 Bigraded Hochschild cohomology

Let A = ⊕iA
i be a graded algebra. A standard procedure, described

in for example [7, Section 5.4], is incorporating the grading of A into
its Hochschild cohomology by defining the bigraded Hochschild complex
CCn,r(A) = Homr

F(A
⊗n, A) ⊂ CCn(A). Here Homr

F(A
⊗n, A) is the

set of all maps f ∈ HomF(A
⊗n, A) such that

|f(a1 ⊗ · · · ⊗ an)| =
n∑

i=1

|ai|+ r.

We can verify that d(CCn,r(A)) ⊂ CCn+1,r , that is, the differential
d preserves the grading. Thus we can define HH∗,r(A), the bigraded
Hochschild cohomology of degree r, by

HHn,r(A) =
ker(d : CCn,r → CCn+1,r)

im(d : CCn−1,r → CCn,r)
. (2.4)

2.5 Quadratic forms

Let A = H∗(L;C) be the cohomology algebra of a closed orientable
3-manifold L. Biran and Cornea [8, Section 5.3] define a map Θ :
HH2,−2(A) → Q2(A1;C) to the space of quadratic forms on A1 as
follows. Consider an element f ∈ CC2,−2(A), and restrict it to a map
f : A1 ⊗ A1 → A1+1−2 ∼= F. Define Θ(f) ∈ Q2(A1;C) to be the
quadratic form Θ(f)(x) = f(x ⊗ x). The proof of the following can be
found in [8, Section 5.3.1].

Proposition 4. The map Θ is well defined on cohomology classes in
HH2,−2(A).

Proof. It is sufficient to show that Θ = 0 on coboundaries. Let f ∈
CC2,−2(A) be a coboundary f = dg. Let x ∈ A1. Then Θ(f)(x) =
f(x ⊗ x) = dg(x ⊗ x) = xg(x) − g(x · x) + g(x)x. But x · x = 0
by (2.1) and |g(x)| = |x| − 2 = −1 since g ∈ CC1,−2(A). Therefore
Θ(dg)(x) = 0. ■

The discriminant ∆ that Charette considers in [1] is ∆(ψ) for a quadratic
formψ ∈ imΘ. Thus, ifHH2,−2(A) = 0, then im(Θ) = 0 and as a result
∆ = 0.

3 Zeroth Hochschild cohomology

The following is a standard result that can be found in [9, Section 9.1] for
example.

Proposition 5. HH0(A) ∼= Z(A), the center of the algebraA.

Let A = ⊕iA
i be a graded commutative Frobenius algebra of degree 3.

For a ∈ Ai, we write its degree |a| = i.

By (2.1), we know thatA0 andA2 are inZ(A). In fact,A3 ⊂ Z(A) as well
because the only nontrivial cup product with elements of A3 is a commu-
tative one with A0. We have a lemma:

Lemma 1. x ∈ A1 is in Z(A) if and only if xyz = 0 for all y, z ∈ A1.

Proof. Let x ∈ A1 be inZ(A). Then, for any y ∈ A1, we have xy = yx =
−xy by graded commutativity. Then 2xy = 0, which implies that xy = 0
since char(F) �= 2. Therefore xyz = 0 for all y, z ∈ A1.

Let x ∈ A1 such that xyz = 0 for all y, z. Suppose that there exists y
such that xy �= 0. Then, as previously mentioned, by Proposition 1, we
can choose z ∈ A1 dual to xy in the sense that xyz = e. This contradicts
the hypothesis that xyz = 0 for all y, z, so we must have xy = 0 for all
y ∈ A1. Therefore xy = yx = 0 for all y ∈ A1 and x ∈ Z(A). ■

Proof of Theorem 1. Suppose that x ∈ A1 is in Z(A). Then, by Lemma 1,
xyz = 0 for all y, z ∈ A1. Then ιµ(x)(y, z) = µA(x, y, z) = σ(x, yz) =
σ(1, xyz) = σ(1, 0) = 0 for all y, z and thus ιµ(x) = 0.

Conversely, suppose that ιµ(x) = 0. Then µA(x, y, z) = σ(x, yz) =
σ(1, xyz) = 0 for all y, z ∈ A1. By the nondegeneracy of σ on A0 × A3

and the fact that A3 ∼= F, we must have xyz = 0 for all y, z ∈ A1, so that
x ∈ Z(A) by Lemma 1.

Therefore, by Proposition 5, we have HH0(A) ∼= A0 ⊕ ker(ιµ) ⊕ A2 ⊕
A3. Note that A0 ∼= A3 ∼= F, so that by counting dimensions, we get
HH0(A) ∼= F2+dimA2

⊕ ker(ιµ). ■

4 Bigraded Hochschild cohomology of an algebra
with trivial 3-form

Proof of Theorem 2. We choose the same bases for the algebra A as in
Proposition 1 and (2.2). That is, we choose a basis {x1, · · · , xβ} for A1

and a basis {x1, · · · , xβ} for A2 such that xixj = δije, where e is a gen-
erator of A3.

All products commute since the only noncommutative product inA isA1×
A1 → A2, which vanishes for µ = 0. The product A0 × Ai → Ai is
scalar multiplication, the product A1 × A2 → A3 is, in the chosen basis,
characterized by the relation xixj = δije, and all other products Ai ×Aj

vanish.

We give a basis for CC1,−2(A) = Hom−2
F (A,A). Define fp with

fp(xi) = δip1 ∈ A0 and fp(e) = 0, define gp with gp(xi) = 0
and gp(e) = xp. We see that {f1, . . . , fβ , g1, . . . , gβ} is a basis for
CC1,−2(A).

We now describe the image of d : CC1,−2 → CC2,−2 (which is injective,
giving HH1,−2(A) = 0, but we don’t need that fact). We have the differ-
ential df(a1⊗a2) = a1f(a2)−f(a1a2)+f(a1)a2. By linearity it suffices
to consider ai to be basis elements ofA. Since df(a1 ⊗a2) = df(a2 ⊗a1)
by the fact that A is commutative, it suffices to consider half the cases.

dfp is nonzero only when either a1 or a2 is xp and neither is 1. For suppose
without loss of generality that a1 = 1. Then df(1 ⊗ a2) = f(a2) −
f(a2) + f(1)a2 = 0. Then, suppose a1, a2 ∈ A2. Then df(a1 ⊗ a2) =
−f(a1a2) = 0 by the fact that the productA1 ×A1 is trivial since µ = 0.
The only nonzero values dfp can take in A0 ∪ A1 are, up to multiplication
by a scalar,

dfp(xi ⊗ xp) = xi. (4.1)

We move on to dgp(xi ⊗ xj). The only nonzero values in A0 ∪ A1, up to
a scalar factor are

dgp(xi ⊗ xi) = −xp. (4.2)

Equations (4.1) and (4.2) imply that for everyh =
∑

m(αmfm+γmgm) ∈
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CC1,−2, if i, j, k are distinct, we have

dh(xi ⊗ xj)xk =
∑
m

αmdfm(xi ⊗ xj)xk + γmdgm(xi ⊗ xj)xk

= 0. (4.3)

Assuming that dim(A1) ≥ 3, we define φ ∈ CC2,−2(A) as follows:

φ(x1 ⊗ x2) = x3, φ(x1 ⊗ x3) = x2 and φ(x2 ⊗ x3) = x1.

Set φ to be symmetric, that is, such that φ(a1 ⊗ a2) = φ(a2 ⊗ a1), and
set φ to zero on every other generator of A ⊗ A. Clearly φ /∈ d(CC1,−2)
by (4.3).

We show that dφ = 0 for all a1, a2, a3 using the differential formula
of (2.3):

dφ(a1 ⊗ a2 ⊗ a3) = a1φ(a2 ⊗ a3)− φ(a1a2 ⊗ a3) + φ(a1 ⊗ a2a3)

− φ(a1 ⊗ a2)a3. (4.4)

It is sufficient to only check for ai basis elements of A by linearity. Fur-
thermore, we only need to check one of dφ(a3 ⊗ a2 ⊗ a1) = 0 and
dφ(a1 ⊗ a2 ⊗ a3) = 0 since φ is symmetric.

It is clear that if any one of a1, a2 or a3 is 1, then dφ = 0 because at least
two terms of (4.4) cancel out and φ(1 ⊗ ai) = 0 by the definition of φ.
It is also clear that dφ(a1 ⊗ e ⊗ a3) = 0 since we defined φ such that
φ(ai ⊗ e) = 0. We calculate

dφ(a1 ⊗ a2 ⊗ e) = −φ(a1 ⊗ a2)e

which can only be nonzero when φ(a1 ⊗ a2) �= 0 in A0, which never
occurs since φ was defined to be zero on all generators a1 ⊗ a2 such that
|a1| + |a2| = 2. Therefore, if any one of a1, a2, a3 is e, df = 0. For this
reason, from this point on we take ai ∈ A1 ∪A2.

We have

dφ(a1 ⊗ xj ⊗ a3) = a1φ(xj ⊗ a3)− φ(a1 ⊗ xj)a3.

If either of a1 or a3 is in A1, this expression is 0 because φ(xi ⊗ xj) = 0,
φ(1⊗ xi) = 0, and µA = 0. We compute

dφ(xi ⊗ xj ⊗ xk) = xiφ(xj ⊗ xk)− φ(xi ⊗ xj)xk = 0

by the fact that the productA1 ×A1 → A2 is trivial since µ = 0. We have
dφ(xi ⊗ xj ⊗ xk) ∈ A4 = 0. Therefore, we have two last cases to check:

dφ(xi ⊗ xj ⊗ xk) = xiφ(xj ⊗ xk)− φ(xi ⊗ xj)xk = 0, (4.5)
dφ(xi ⊗ xj ⊗ xk) = xiφ(xj ⊗ xk)− φ(xi ⊗ xj)xk = 0. (4.6)

Both (4.5) and (4.6) are true if i, j, k are ≥ 4. Note that only one of the
cases (i, j, k) and (k, j, i) needs to be checked. By (4.6) and by the way φ
was defined, it is sufficient to check the cases in which i, j, k are distinct.
Checking by hand over (i, j, k) = {(1, 2, 3), (2, 1, 3), (1, 3, 2)} we see
that both equations are always satisfied.

Thus, φ ∈ ker(d : CC2,−2 → CC3,−2) but φ /∈ d(CC1,−2) and as a
result HH2,−2(A) �= 0. ■
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