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Automated ultrasonic vocalization analysis: 
Training and testing VocalMat on a rat-based 
dataset

Samir Gouin1

Abstract

Background: Ultrasonic vocalizations (USVs) offer another way to study the behaviour of rodents in addition 
to commonly used visual methods. USV subtypes have been associated with behaviour such as the concur-
rence of 22-kHz calls and signs of distress (defensive behaviour). (1,2) However, the categories used to ana-
lyze USVs are a source of contention, most notably with 50-kHz calls, and may even be arbitrary altogether. 
(3) To facilitate subtyping calls, VocalMat has been developed for USV identification and classification, and it 
has shown an accuracy of greater than 98% for mice USV detection and 86% for mice USV classification. (4) In 
this project, we have constructed a rat-based dataset of USVs and then used it to train the VocalMat program 
to assess automated USV classification. 

Methods: Avisoft-SASLab Pro was used to manually classify USVs from 216 audio files. The sorted USVs were 
then used to train VocalMat’s classification program. 

Results: Our results show overall accuracies greater than 90% with the highest in the trill and flat categories 
(97.2% and 91.0%). We experimented with the number of USV categories and found high accuracies when 
grouping spectrographically similar calls, which are flat calls with up and down ramp calls (96.9%) and trill 
calls with trill jump and flat-trill calls (98.7%).

Limitations: There are large variations in the number of calls per category in our dataset. More data is need-
ed to fill these gaps and provide more training samples for infrequent calls.

Conclusions: By creating a database of rat USVs and then using it to train VocalMat, we have shown the 
potential of its adaption to a rat vocal repertoire. Going forward, we hope to test more variations of USV 
categories on machine learning programs to establish a robust approach to classifying USVs. 

Introduction

Ultrasonic vocalizations (USVs) offer perspective into the social and emo-
tional states of rodents. (5) Rodent USVs are composed of syllables collec-
tively ranging from 20-110 kHz, a range higher than human perception. 
USVs have distinctive acoustic features including frequency, duration, and 
pitch. The analysis of these acoustic features and spectrographic shapes 
allows USVs to be categorized into subtypes. USVs have been associat-
ed with behaviour, such as the concurrence of 22-kHz calls and signs of 
distress, (2) and are thought to play an important role in affective signal-
ing, social communication, and thermoregulation. (5) USV analysis can 
be used to study the effects of drugs on rodents by monitoring changes in 
calling during experiments, making it an important tool in pharmacology 
research. (6-8)

Laboratory rats make three broad types of calls: pup calls, 22-kHz calls, 
and highly heterogenous 50-kHz calls. The 22-kHz and 50-kHz labels are 
approximations, as in reality the frequencies of these calls vary from 18-32 
kHz and 35-72 kHz respectively. (9) There appear to be spectral graphic 
similarities between mice and rat USVs. However, mice lack 22-kHz and 
trill call equivalents. (5) Moreover, there are spectral differences between 
rat and mice USVs, such as shorter short calls and greater modulation of 
frequency in upward ramp and downward ramp calls in mice. (4, 10) The 
categories used to analyze USVs are a source of contention, most notably 
with 50-kHz calls, and may even be arbitrary altogether. (3) Regardless, 
USV analysis has value as a non-invasive method to monitor changes in 
rodent behaviour.

Categorization schemes for rat 50-kHz USVs have evolved and increased 
in complexity. Initially, calls were categorized in only two groups, frequen-
cy-modulated and flat calls. (11, 12) They were subsequently categorized 
in three/four groups, (13, 14) and currently, in 14 groups (Fig. 1). (1) 
At present, most groups studying rat USVs use software called Avi-
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soft-SASLab Pro developed by Avisoft Bioacoustics. Avisoft software is 
commonly used to record USVs, analyze spectrograms, and categorize 
calls. Post-recording, the sound files can be preprocessed in Avisoft-SASLab 

Pro through contrast adjustment and noise reduction. Subsequently, USVs 
can be identified and manually classified by subtype. Avisoft-SASLab Pro 
also includes an automatic call selection option. However, this approach is 
unreliable and requires frequent manual configuration. When analyzing 
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Figure 1. A graphical representation of the two approaches test-
ed, category reduction (removing USC categories) and category 
merge (combining USV categories), and the overall accuracies of 

each trial.
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hundreds of calls, manual processing is both time-consuming and prone 
to error. In addition, some USVs may be difficult to readily classify, which 
highlights the need for more robust classification procedures. 

In the field of USV analysis, convolutional neural networks (CNN), a 
machine learning approach that leverages computer vision, have been 
increasingly used to identify and classify USVs. Programs such as Deep-
Squeak and VocalMat have shown high accuracies of USV identification 
and classification in mice. (15, 4) Furthermore, these programs have im-
plemented adaptive methods to reduce noise and heighten the clarity of 
USV spectrograms. Notably, machine learning approaches can be trained 
on different datasets. This increases a program’s flexibility for use in differ-
ent experiments. 

Although these new programs are promising, they have been developed 
largely or exclusively to recognize mouse USVs. VocalMat has not been es-
tablished for use with rat USVs. This motivated us to develop a rat dataset, 
train VocalMat with it, and evaluate its performance on rat USV classifica-
tion. By extending a program developed for use in mice to classify rat calls, 
we aim to advance automated USV analysis.

Review of Automated USV Analysis Approaches 

Many programs have been used for automating rodent USV analysis, 
including MUPET, (16) A-MUD, (17) WAAVES, (18) XBAT, (19) Deep-
Squeak, (15) and VocalMat. (4) Since many of these programs do not 
employ machine learning, they lack the necessary flexibility to deal with 
different datasets that each contain a variety of USV categories. As a result, 
these programs, in addition to the other non-machine learning approach-
es, would need to be tailored to specific testing conditions. Most recently, 
DeepSqueak and VocalMat have been developed to use machine learning 
in the identification and classification of mouse calls. 

DeepSqueak is a MATLAB package that couples an object detection net-
work with a region proposal network1 (R-CNN). DeepSqueak detects 
USVs by analyzing USV length, frequency range, and a classification con-
fidence parameter. The classification confidence parameter is based on the 
probability that the region of interest contains a call or background noise. 
The calls can be discriminated from background noise (denoised) auto-
matically to reduce the number of false positives. Thresholds for tonality, 
or the amount of energy focused at a single frequency, are applied to fur-
ther reduce silence and noise, and subsequently, optimize the clarity and 
detection of USVs. The authors showed that high levels USV detection 
were maintained despite the addition of white noise or natural noise.

Supervised or unsupervised training methods can be used in DeepSqueak 
to classify USVs based on contour extraction of their spectrographic 
shapes. When employing supervised2 training, Coffey et al. used five cate-
gories (split, inverted U, short rise, wave and step) to sort ~56,000 mouse 
USVs and train the classification CNN. For unsupervised training, the 
contours were automatically clustered by shape, duration and frequency. 
Individual USVs were subsequently sorted by their degree of similarity to 
the clusters. When optimized, 20 clusters were found to be most effective3. 
Therefore, DeepSqueak recognized 20 potential categories of mouse USVs 
with unsupervised training. (15)

VocalMat, developed by the Dietrich lab (Yale School of Medicine), is a 
MATLAB package that employs image-processing and differential geome-
try4 approaches to analyze USVs. (4) In contrast to DeepSqueak, VocalMat 
identifies calls based on intensity thresholds calculated for each record-
ed segment. Sound recordings are converted to gray-scale spectrograms 
in which brighter pixels represent high-intensity values, and contrast 
enhancement is used to emphasize the USVs against background noise. 
Noise is further reduced via a local median filter based on the ratio of 
the median intensity of pixels in the detected USV candidates versus the 
background. Several morphological operations and the removal of small 

noise artifacts (≤ 60 pixels) enhance the clarity of USVs. The remaining 
USV candidates are classified into subtypes. In developing VocalMat, the 
Dietrich lab used transfer learning from AlexNet5, pretrained on the Im-
ageNet dataset, to train the CNN on prelabeled data (supervised learning 
method). They trained their program on images of individual calls ex-
tracted from spectrograms rather than trained on acoustic datafiles. They 
used 12,954 mice USVs across 12 categories: chevron, reverse chevron, 
down-frequency modulation, up-frequency modulation, flat, short, com-
plex, step up, step down, two steps, multiple steps and noise. 

When testing VocalMat and DeepSqueak, which were trained on a mouse 
datasets, on rat calls, there was poor performance (<50% accuracy). To 
test the efficacy of a CNN approach to USV classification, we modified Vo-
calMat and trained it on a rat USV dataset. To date, no other labs have de-
veloped automated USV analysis programs specific to rats. VocalMat was 
selected over DeepSqueak due to its higher detection rate of mouse calls: 
91.7% compared to 78.0%. (4) VocalMat classified USVs in 12 categories 
of mouse calls at an overall accuracy of 86.0%. (4) Additionally, VocalMat 
allows for efficient adaption of the program to different datasets as it uses 
transfer learning rather than training a network from scratch6. 

Methods
USV Categories
The USVs were classified according to the following categories (1):

1 A method used to predict the regions of objects and reduce the time of detection2 The use of a prelabelled dataset3 Based on the elbow method - the inflection point at which the introduction of new clusters produced diminishing improvement on error reduction4 Used to fine-tune CNNs with image features such as curvature5 A large CNN used for object recognition6 A computationally intensive process that could last days-weeks with negligible performance differences
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Animals

Eight adult male Long-Evans rats (290-344 g, weighed at the start of USV 
recordings) were housed in a reverse cycle room (2 per cage). Food and 
water were accessible ad libitum outside of testing sessions, and the home 
cages were maintained by the animal facility of McGill University. All pro-
cedures were approved by the McGill Animal Care Committee in accor-
dance with the guidelines of the Canadian Council on Animal Care.

Recording Sessions

The rats were recorded in a plexiglass chamber (29.5 cm high × 57.6 cm 
wide × 53.5 cm deep, ENV-007CT, Med Associates, St. Albans, VT). The 
chambers contained bedding that was changed between recording sessions 
and were encased in sound-reduction acoustic foam (Primacoustic, Port 
Coquitlam, British Columbia). USVs were recorded with a CM16 (Avi-
soft Bioacoustics, Berlin Germany) microphone angled towards the center 
of the box with the Avisoft Bioacoustics RECORDER software (version 
4.2.29). Recording sessions were conducted on alternating days. During 
each recording session (20 min), four rats, each with their own chamber 
and microphone, were recorded as they naturally vocalized. Recording 
was started before the rats were placed in the chambers. A total of 216 
audio (WAV) files were obtained.

Dataset

Spectrograms were generated from the audio files using a fast Fourier 
transform (FTT) length of 512 points and an overlap of 75% (FlatTop win-
dow, 100% frame size). The USVs had been previously manually identified 
and classified using Avisoft-SASLab Pro by another lab member (Adithi 
Sundarakrishnan) who provided the audio files used in this project. The 
next challenge was to export the classified USVs in separate image files 
with a standardized time and frequency axis. To this end, we adjusted the 
export parameters of the batch progress function with Raimund Specht 
(Berlin-based Avisoft Bioacoustics developer) and implemented new fea-
tures that allowed the export of USVs into image (PNG) files organized 
by their classification. To standardize the time axis, we added margins to 
the USVs by inserting random background sections of the spectrograms. 
Following this procedure for 216 audio files, we obtained a total of 19,769 
USVs7.

VocalMat

The next step was to train VocalMat’s USV classification program8 on the 
rat dataset of images. Each training trial was independent of the others. We 
implemented a custom reader to standardize image size (227 x 227) and 
convert grayscale images to RGB for use with VocalMat.

The classification CNN was trained using the Dietrich Lab recommended 
settings: a batch size of M=128 images and a maximum epoch number of 
100. 33 epochs was the highest quantity used in our training. A stochas-
tic gradient descent with momentum (0.9) at a learning rate of α = 10-4 
and weight decay λ = 10-4 was used to optimize training parameters. As 
this process is stochastic, the results from training a dataset differed be-
tween trials. Thus, we trained similar categories multiple times to compare 
results. In addition, we varied the number of categories to avoid overfit-
ting9 on our relatively small dataset. Specifically, we reduced the number 
of categories to lower the complexity, or number of parameters used for 

classification. The classification was trained on 90% of the inputted images 
and the accuracy, defined as the rate at which the automated classification 
matches the manual one, was assessed on the validation set (10%).

Results

We experimented with removing and merging categories of USVs used to 
train VocalMat (Fig. 1). The latter approach was used when USV subtypes 
shared stereotypical features such as trill jump and flat-trill USVs. Nota-
bly, removing categories would limit the pipeline’s usefulness and merging 
categories would require manual categorization to distinguish the USVs 
within the merged category. When balancing the complexity of the model, 
or the number of categories with the degree of accuracy of specific USV 
subtypes, we prioritized high accuracy over including many categories. 
This would be of use when quantifying specific USV subtypes over record-
ing sessions, rather than the prevalence of all USV subtypes over recording 
sessions.

Training with Original Categories

We trained the program to recognize all the categories of USVs described 
by Wright et al. (2010) with two exceptions: complex and composite calls 
were excluded as there were insufficient images available for training 
purposes. We obtained an overall accuracy of 78.4%. An accuracy high-
er than 85% was obtained for 22-kHz calls and for 50-kHz call types, i.e. 
trill (91.2%), short (93.3%), split (86.7%) and flat (87.1%). Based on these 
results, we reduced the USV categories from the initial 13 to 6 to omit 
the categories with the lowest accuracies, with the exception of chevron 
calls (Fig. 2a: Trial 1). We kept the chevron category because it had high 
accuracies when VocalMat was trained on the mouse dataset. The accura-
cy improved to 94.5%. All categories had an accuracy over 90.0% except 
for the classification of chevron calls (75.8%). Subsequently, we discarded 
the least accurate category, chevron calls, with its samples, and trained the 
program two times, now with only five categories: trill, 22-kHz, short, split 
and flat (Figure 2a: Trials 2 & 3). Trills, splits and flats showed the most 
consistent results. The overall accuracies were 91.0% and 92.1%, slightly 
below the previously obtained 94.5%. 

Training with Merged Categories

To reduce potential overfitting, we next experimented with combining 
spectrographically similar USVs into categories. We merged the trill, flat-
trill and trill jump calls (n=7724 calls), the split calls with the multi-step 
calls (n=899 calls), and the up ramp, down ramp and flat calls (n=5808 
calls). The combined trill group resulted in an accuracy of 93.7%, lower 
than the mean of trills alone (~ 97%). The split calls combined with the 
multi-step calls had a lower accuracy of 53.3%. Notably, the multi-step 

Figure 2a The performance of classification training when grouping the im-
ages in chevron, trill, 22-kHz, short, split and flat categories across three trials 
(blue, grey and orange). Figure 2b. The performance of classification training 
when grouping the images in trill, flat and other categories across three trials 

(yellow, blue and green).

7 Please contact the author for access to the dataset8 Available at https://github.com/ahof1704/VocalMat.git9 This occurs when the model is too closely fitted to the training data and cannot be generalized and successfully used on different data 10 A lack of capturing characteristic features, often the result of biased or limited data 



Volume 16 | Issue 1 | April 2021 Page 41

calls have a much smaller training set and are thus susceptible to under-
fitting10. The flat calls combined with up and down ramp calls showed an 
accuracy of 93.8%, comparable to a mean accuracy of 92.0% of flats alone.
Every region of a spectrogram that VocalMat identifies as salient (i.e. pin-
pointed by high-intensity pixels) must be classified in a category. Conseq-
uently, the authors included a "noise" category. Similarly, we implemented 
a three-way classification consisting of an “other” group, in addition to 
the trill and flat groups (the two most prevalent USVs). This gave us a 
better indication of how VocalMat would perform when analyzing highly 
variable noise artifacts and audio files, which are replete with individual 
calls that bear similarity to multiple categories and cannot be readily clas-
sified. We trained the program three times with different combinations of 
the flat and trill calls. In the first instance, we assessed trill (n=6330 calls) 
and flat calls (n=5103 calls) alone with the “other” category (n=7625 calls) 
and obtained a total accuracy of 85.9% (Fig. 2b: Trial 4). We then grouped 
the trill category with the trill jump and flat-trill categories (n=7724 calls) 
and retrained VocalMat. The accuracy of the combined trill category de-
creased from 92.2% to 90.0%, but the overall accuracy showed a negligible 
change of 85.9% to 86.1% (Fig. 2b: Trial 5). We observed the strongest 
performance when grouping the trill category with the trill jump and flat-
trill categories (n=7724 calls), and the flat USVs with the up ramp and 
down ramp categories (n=5808 calls). Compared to the other two trials, 
the performance was higher in all groups and the overall result was 94.8% 
accuracy (Fig. 2b: Trial 6).

Discussion

Our results show high overall accuracy with a 6-category classification 
scheme of chevron, trill 22-Hz, short split and flat calls (94.5%, Trial 1) and 
with 3 merged categories (94.8%, Trial 6) as reductions from the initial 13 
categories. These results are the first foray into adjusting VocalMat for rat, 
rather than mouse, USV classification. These 2 categorization approaches 
could be used depending on the degree of complexity required; the former 
is best suited for experiments evaluating multiple USV subtypes and the 
latter is best for focused analysis of specific subtypes. 

As predicted, omitting certain call subtypes and merging other call sub-
types to form larger categories had an effect on training accuracy. Coun-
terintuitively, removing the most inaccurate USV category of chevron calls 
with its accompanying samples did not increase overall accuracy (Fig. 2a). 
This may be the result of decreased variance in the dataset. Merging cate-
gories also led to a decrease in accuracy except flat calls with up and down 
ramp calls (96.9%, Fig. 2b) and trill calls with trill jump and flat-trill calls 
(98.7%, Fig. 2b). Merging multiple USV subtypes that may not look alike 
within a category was expected to increase intra-category variability and 
decrease the accuracy of categorization. This approach is sufficient for 
experiments focused on trill and flat calls but will require adaptation for 
other common call subtypes. Further manual processing will be required 
to classify USVs within merged categories, such as discriminating between 
trill, trill jump and flat-trill calls. As VocalMat relies on a stochastic train-
ing process, more trials are required to compare the accuracies of different 
USV group combinations and determine the highest potential accuracies 
of each combination of categories, in addition to testing calls that are un-
able to be categorized. 

While not a direct correlation, the USV categories with the most images, 
trill and flat calls, retained relatively consistent accuracies across the train-
ing trials and notably, the highest average accuracies (97.2% and 91.0%, 
Fig. 2a). These calls have relatively simple spectrographic shapes in com-
parison to the other call categories. As a result, the dataset for these cate-
gories may have less variability, leading to more consistent categorization. 
Our dataset is a reflection of the actual USV prevalence by category; nota-
bly, trills and flat calls each represent on average about 30% of all 50-kHz 
calls. In addition, there are large variations in the number of calls per cate-
gory. More data is needed to fill these gaps and provide additional training 
samples for infrequent calls. Specifically, a large dataset comprising calls 
from male and female rats at different ages will be critical to capture vari-
ations within USV categories, (20, 21) as individual rats differ in terms 
of which USV subtype they most commonly emit. (1) Through following 
the procedure outlined in this paper, it is possible to construct and grow 

databases for use with machine learning programs.

In summary, we have adapted VocalMat for use in adult rats and have 
shown that it can classify 50-kHz calls with a high degree of accuracy. 
These results show promise and the established procedure will help build 
upon these results. By experimenting with other datasets, we hope to fur-
ther test VocalMat and improve USV call classification. 
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