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Abstract

Predicting patient functional outcomes is an indispensable part of clinical care in the Pediatric Intensive Care
Unit (PICU), especially for children with epilepsy, a prominent neurological emergency. Electroencephalog-
raphy (EEG) is a dynamic tool for assessing brain activity, with brain complexity and spectral power features
emerging as predictors of consciousness recovery. We investigated whether patients’ EEG activity under anes-
thesia could predict their recovery, using data from 12 pediatric epilepsy patients (mean age: 11.0±2.2 years).
Neural complexity, the intricacy of connectivity betweenbrain regions, is heavily implicated in apatient’s capac-
ity for consciousness. We hypothesize that neural complexity will be a stronger predictor of patient outcomes
than spectral power and that higher complexity will be associated with better outcomes. EEG features were
analyzed during sedated, baseline (non-sedated), and difference states. Recovery was assessed three months
post-injury using theGlasgowOutcome Scale-Extended (GOS-E). The predictive performance of significant EEG
markers was evaluated using logistic regression with leave-one-out cross-validation and permutation testing.
Baseline EEG features showed minimal prognostic power, whereas sedation and difference states yielded high
prognostic accuracy. In the sedated state, the complexity features rate entropy and Lopez-Ruiz-Mancini-Calbet
Complexity (HC-LMC) predicted recovery, separating good and poor outcomes with 100% accuracy. These
findings demonstrate that EEG markers of complexity can predict the recovery of consciousness in pediatric
epilepsy patients under anesthesia. Therefore, EEG analysis could be an accessible, accurate, and powerful
prognostic tool in clinical settings. Future research should explore these results in larger samples to validate
the findings that rate entropy and HC-LMC are predictive of recovery. Further, these features should be studied
in patients of different etiologies to analyze their potential as generalizable markers of consciousness.

Introduction

An unresponsive, brain-injured patient’s capacity for consciousness is an
integral component of their prognosis. Accurate, efficient prognostication
allows clinicians to develop informed care strategies and recovery plans.
The need for a powerful tool to assess the recovery of consciousness is par-
ticularly evident in the Pediatric Intensive Care Unit (PICU), which pro-
vides care to children with critical conditions that often lead to states of
unconsciousness. Epilepsy, a common reason for admission to the PICU,
is a condition characterized by frequent seizures caused by abnormal elec-
trical activity in the brain. Seizures cause transient or prolonged disrup-
tions in consciousness and are the most prevalent childhood neurological
emergency1,2.

Neural complexity, the complexity of the brain’s connectivity, is a key
framework for understanding consciousness. Early studies suggest that
high complexity necessarily supports awareness3. This idea has been cor-
roborated by recent studies showing that brain signal complexity corre-
lates with consciousness levels: in both electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI) analysis, complexity de-
creased with anesthesia-induced unconsciousness4,5.

Anesthesia is commonly administered to PICU patients for sedation and
pain management, and neural changes with anesthesia-induced uncon-
sciousness can be monitored with EEG (a non-invasive measure of the
brain’s electrical activity)6,7. These changes arise from the brain’s recon-
figuration with anesthesia, adapting to a new physiological environment
by shifting connectivity. In the injured adult brain, the extent of this recon-

figuration reflects the brain’s capacity to recover consciousness8. Therefore,
assessing the brain’s EEG signature under anesthesia is a promisingmethod
of predicting a patient’s recovery.

EEG is often used to assess the neural status of patients with epilepsy1,9.
Disruptions of consciousness during epileptic seizures are correlated with
a loss of EEG complexity10. This finding supports the conclusions from
anesthesia research: a loss of consciousness is associated with reduced neu-
ral complexity. As shown with anesthesia-induced unconsciousness, a be-
haviourally unresponsive patient’s EEG activity can reveal their underly-
ing capacity for consciousness, highlighting EEG as a powerful prognostic
tool11.

Many EEG features correlate to a patient’s capacity for consciousness. In an
EEG signal, spectral power measures the strength of brain activity within
different characteristic frequency bands: delta (0.5–4 Hz), theta (4–8 Hz),
alpha (8–12Hz), beta (12–30Hz), and gamma (>30Hz). Spectral power, in
particular alpha power, has emerged as a prominent feature in discerning a
patient’s capacity to recover consciousness12. Anesthesia induces a state of
altered consciousness, causing a shift in power fromhigher frequency (beta,
alpha) to lower frequency (theta, delta) spectral bands in EEG recordings13.
However, recent research suggests that alpha power may be a marker of
consciousness specific to anoxic patients, whose injuries are caused by a lack
of oxygen to the brain14. Therefore, the need for diverse and comprehensive
markers of consciousness is evident.

The Perturbational Complexity Index (PCI), currently a leading method to
discern a patient’s level of consciousness, measures the complexity of in-
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formation in an EEG signal15. PCI evaluates the complexity of EEG sig-
nals after transcranial magnetic stimulation (TMS), a technique that uses
magnetic pulses to stimulate the brain. This method differentiates between
levels of consciousness with high accuracy16. However, PCI is limited by
its high computational complexity and the scarce clinical availability of
TMSmachines, highlighting the need for accessiblemeasures of conscious-
ness17,18.

We propose anesthesia as an effective perturbational mechanism to assess
EEG signal complexity. This method is clinically accessible, taking advan-
tage of existing conditions in the PICU: continuous EEG monitoring and
anesthetic infusion. We aim to use these clinical conditions to explore how
a patient’s EEG activity changes with anesthesia—can EEG features predict
recovery? Our objective is to develop a tool that uses EEGmarkers to assess
the capacity for a return of consciousness in epileptic pediatric patients.

We analyzed various features of EEG complexity and spectral power dur-
ing baseline (non-sedated) and sedated states, observing if these measures
predicted the recovery of consciousness. Baseline states were taken when
the patient was not experiencing active seizures, either before or after seda-
tion depending on the availability of recordings. We further considered the
prognostic potential of neural reconfiguration under anesthesia, looking at
the difference in EEG activity between the baseline and sedated states. Our
goal is to extend findings in adults to pediatric patients, exploring whether
EEG markers of consciousness can predict functional outcomes. We hy-
pothesize that worse outcomes will be correlated with lower neural com-
plexity, aligning with the findings that high complexity supports conscious-
ness3–5,10. We aim to find accessible prognostic markers in epileptic pedi-
atric patients to improve clinical outcomes and advance the understanding
of consciousness recovery in the PICU.

Methods

Participant Selection

Participants were selected from an EEGdataset of 41 pediatric patients with
a variety of brain injuries, collected in the McMaster Children’s Hospital
PICU. These patients were given sedatives at different dosages, including
midazolam, propofol, and fentanyl. To observe meaningful neural trends,
we only used sedation recordings known to alter EEG activity: propofol
and midazolam. Propofol and midazolam act through GABA-A receptors,
increasing the effects of the inhibitory neurotransmitter GABA to reduce
brain activity19,20. Fentanyl is used for pain management and does not sup-
press brain activity to the same extent as propofol and midazolam. There-
fore, a recording containing only fentanyl was considered a baseline state.

Patients’ three-month outcomesweremeasuredwith theGlasgowOutcome
Scale-Extended (GOS-E), a scale from 1 (patient death) to 8 (upper good
recovery) used to assess functional outcomes21. Our inclusion criteria were
[1] epilepsy etiology, [2] over five years old, [3] available baseline and se-
dation recording, [4] available three-month GOS-E measurement, and [5]
good quality EEG data. After selection, twelve participants remained.

The demographics of the participants are as follows: six females and six
males with a mean age of 11.0±2.2 years (range: 8.0-14.0 years), ten par-
ticipants with midazolam infusion and two with propofol infusion, seven
participants with good recovery (GOS-E ≥ 7) and five with poor recov-
ery (GOS-E < 7) recorded three months post-injury. We defined a GOS-E
threshold of ≥ 7 as the recovered group and < 7 as non-recovered.

Upon admission to the PICU, eight participants presented with status
epilepticus, an emergency characterized by long or repeated seizures. Of
the remaining four participants, three presentedwith acute seizures, but it is

unclear whether theymet the criteria for status epilepticus. The final partic-
ipant had systemic injuries related to seizure events. Five participants had
a previously established diagnosis of epilepsy, whereas seven participants
were either new onset or had an uncertain epilepsy history. The majority of
patients likely have generalized seizures, affecting large parts of the brain.
However, two participants presented with features that may suggest focal
epilepsy: one participant with Sturge-Weber syndrome, commonly associ-
ated with focal seizures, and another participant with a temporal-parietal
abscess who also likely had focal seizures.

Sedation Considerations

Each participant’s sedation recording is within 50 hours of their baseline
recording. Propofol and midazolam have different effects on EEG, particu-
larly within the beta frequency band that is associated with fast, short wave-
length EEG frequencies22,23. Midazolam can increase beta spectral power,
contrasting with reduced beta spectral power observed with propofol se-
dation. However, at lower drug doses (sedative doses), propofol and mi-
dazolam have similar effects on EEG activity. As mentioned, both drugs
act on the same receptor to yield neural inhibition. Therefore, we included
participants with either midazolam or propofol sedation to observe if gen-
eral neuronal inhibition, irrespective of the specific drugmechanism, could
predict the recovery of consciousness.

A high sedative dose was preferentially chosen for study inclusion in partic-
ipants with multiple sedation recordings, as it yields more significant neu-
ral change. Infusions were within a typical PICU sedation maintenance
range13. Midazolam doses ranged from 1-6 μg/kg/min, and propofol doses
were between 1-4 mg/kg/hr. Most participants had a dose on the higher
end of these ranges, and the doses were similar between the recovered and
non-recovered groups. While the participant with the propofol infusion of
4mg/kg/hr fell slightly outside of the standard sedative range, this variation
did not meaningfully impact the results. The specific dose selected for each
participant is noted in Supplementary Table 1.

EEG Preprocessing

EEG data was recorded with a 26-channel system, where 26 electrodes were
placed around participants’ scalps to record whole-brain electrical activ-
ity. These electrodes were placed in the standard 10-20 system arrange-
ment that distributes electrodes across the scalp. This data was collected in
the McMaster Children’s Hospital PICU. Recordings ranged between 7-30
minutes long. Data was preprocessed prior to further analysis, a common
EEG technique to remove non-physiological noise. Preprocessing gener-
ally contains the same standard steps: filtering out extremely high and low-
frequency data (known to be non-physiological), selecting a reference elec-
trodewhose activity is used as a baseline for other electrodes, and fragment-
ing the EEG recording into shorter segments (epochs) for amore fine-tuned
analysis. An example of our EEG data segmented into epochs is shown in
Figure 1C, where each horizontal line indicates the data fromone electrode,
and the dotted vertical lines isolate 10-second data stretches (our epoch
length).

Our preprocessing pipeline used Python tools (MNE, NumPy, Pandas,
SciPy, AutoReject24). We performed Independent Component Analysis
(ICA), a technique to find and remove EEG components related to eye and
heart activity that could introduce electrical noise into the recordings. Ex-
amples of components found with ICA are shown in Figure 1A, where red
indicates positive activation and blue indicates negative activation. Scalp
regions that have more intense colour have higher activity. A component
caused by an eye blink will have high activity in the frontal electrodes (near
the “nose” in the scalp schematic in Figure 1A). Components originating
from non-brain sources, such as eye blinks, were identified and removed
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before reconstructing the EEG signal. We then used the EEG-specialized
machine learning tool AutoReject to automatically detect, interpolate, and
remove particularly noisy epochs.

We filtered out low and high frequencies to yield recordings with activity
between 0.5-45 Hz. We further applied a notch filter, a filter used to dras-
tically decrease the strength of a signal at a target frequency, at 60 Hz. 60
Hz corresponds to the AC electrical power of North America, appearing as
significant electrical noise in the EEG signal. TheMastoid electrodes are lo-
cated near the ear and do not generally record high levels of brain activity.
Therefore, we set the Mastoid electrodes as references, with their activity
serving as a baseline from which to analyze other electrodes.

We inspected each recording’s Power Spectral Density (PSD) plot, which
shows how power (y-axis) is scattered across frequencies (x-axis). Exam-
ple PSD plots are shown in Figure 1C and Figure 1D. A high-power value
at a given frequency indicates that frequency is prominent in the EEG sig-
nal. Through visual analysis of these plots, we identified many high-power
peaks around 28 and 44 Hz. These peaks were likely induced by medi-
cal equipment in the PICU. The peak parameters (power, width, and fre-
quency) were identified with the power spectrum modelling software Fit-
ting Oscillations and One Over F (FOOOF), a Python package used to find
key power and frequency characteristics of EEG signals25. We used a notch
filter to remove the peaks at 28 and 44 Hz, adjusting the power of the fil-
ter to the size of the peak. Electrodes that contained excessive noise not
removed during prior preprocessing were identified, and up to 25% of elec-
trodes were removed per recording to improve data quality.

Results show successful noise reduction and improved signal quality post-
preprocessing. The dataset contains 145 recordings from 12 participants.
Four recordings failed the preprocessing pipeline due to excess noisy
epochs. Within the remaining data, 4.69% of all EEG electrodes were re-
moved.

EEG Analysis

We calculated 12 spectral power and 27 complexity features for each epoch
and electrode in the EEG recordings. We then calculated the median value
for each feature across all epochs and electrodes, ensuring we had only
one value per feature for each participant for simplicity of analysis. Fur-
ther analysis was performed with these median values to compare time-
averaged EEG feature values with patient recovery. The 12 power fea-
tures included the relative and absolute spectral power values for the pre-
viously mentioned characteristic frequency bands (delta, theta, alpha, beta,
and gamma). Additional power features were the slope and slope offset
of the PSD plots, measures of how spectral power decays with increasing
frequency (see examples of this frequency-dependent decay in Figures 1C
and 1D). Complexity features were a range of neural complexity and en-
tropy features implicated in signal processing and consciousness science.
Some examples are Lempel-Ziv complexity (LZC), Permutation entropy,
and Shannon Entropy.

We plotted each feature’s value against GOS-E with a linear regression line
and calculated the Pearson correlation coefficient (r) to assess the strength
of a linear relationship between two variables. We further calculated theR2

and p-value of the Pearson correlation, which indicate whether the linear
model is a good fit to the data and the significance of the observed rela-
tionship, respectively. R2 is a value between 0 and 1, with values closer to 1
indicating a stronger fit of themodel to the data. The p-value is ameasure of
statistical significance, where smaller p-values indicate greater significance
(with p < 0.05 often used as a cutoff).

TheR2 valuewas validated using leave-one-out cross-validation. This tech-
nique evaluates the linear model’s fit by sequentially removing individual

data points and assessing the model’s performance on the omitted data.
Cross-validation allows for a more thorough analysis of the relationship
between GOS-E and EEG features; a correlation with a high R2 but low
validated R2 indicates that the correlation is well fitted to the present data
but may not generalize well to new data (overfitting). We performed this
linear analysis three times, looking at trends in the baseline state, sedated
state, and the absolute difference between the baseline and sedated states
(difference state).

Subsequently, we divided participants into recovered and non-recovered
groups. Differences between recovery groups for each EEG feature were
assessed with a Mann-Whitney U test, which uses the test statistic U to
evaluate whether the distributions of two groups differ significantly. The
Mann-Whitney U test was performed on the baseline, sedated, and differ-
ence states. A p-value of < 0.05 was used to evaluate whether the differ-
ences observed in the Mann-Whitney U test were statistically significant.
Features that yielded significant U values had better separability between
groups and were selected for further analysis.

These significant features were used in logistic regression, a machine-
learning technique that calculates the probability of an instance belonging
to one of two classification categories. We trained a logistic regression to
determinewhether a patient was recovered (highGOS-E) or non-recovered
(low GOS-E) from EEG features. We tested different combinations of fea-
tures to find those that yielded the highest predictive accuracy. After find-
ing this combination, we modified the logistic regression to enhance per-
formance by normalizing EEG features to the same scale and adjusting the
model’s hyperparameters (adjustable settings which control themodel’s be-
haviour and complexity). We found that the ideal hyperparameters were
those that reduced the model’s complexity, ensuring it generalizes well to
new data, and used a regression algorithm well suited for small datasets.
The model was validated with leave-one-out cross-validation.

The 95% confidence intervals for accuracy and the area under the Re-
ceiver Operating Characteristic (ROC) curve (AUC-ROC) were calculated
to evaluate the model’s performance. AUC-ROC quantifies how well a
model distinguishes between two groups, with higher values indicating bet-
ter discrimination. Confidence intervals provide a range of values for these
metrics, indicating the model’s reliability and generalizability. To estimate
these intervals, we used bootstrapping—a resampling technique that re-
peatedly tests random subsets of the data to assess the model’s reliability.
We used bootstrapping with 1000 iterations to obtain a stable measure of
the confidence intervals without using excessive computational resources.
The significance of the accuracy and AUC-ROC was assessed with a per-
mutation test, which evaluates whether the results are statistically mean-
ingful by randomly shuffling data and recalculating outcomes over 1000
iterations.

Many participants have several EEG recordings with different sedative
doses. As previously discussed, we selected the highest available sedative
dosewithin the typical PICU sedation range for study inclusion. To validate
our dosage selection method and the logistic regression’s performance, we
ran a series of logistic regressions with randomized sedative EEG record-
ings selected from a participant’s available recordings. This analysis helps
reveal whether higher sedative doses are optimal for EEG investigation.
For each participant, a random recording within the typical PICU sedative
range was selected. The range of available sedation doses for each partici-
pant is noted in Supplementary Table 1. These recordings were then subject
to logistic regression with the same parameters as previously outlined, and
the accuracy and AUC-ROC were assessed. We repeated this randomiza-
tion 1000 times and calculated the average accuracy and AUC-ROC across
all trials. This additional analysis helps to better understand the prognostic
capabilities of anesthetic infusion, regardless of the selected dosage.
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(A)

(B)

(C) (D)

Figure 1. Visualization of the preprocessing pipeline for an example EEG recording. (A) Independent Component Analysis (ICA) to identify different components
of activity across the scalp. Red regions represent positive activation, and blue regions represent negative activation. Higher opacity indicates greater activity in
that area. (B) Time series of EEG activity segmented into epochs, showing multi-channel brain activity. The horizontal axis represents different 10-second epochs,
while the vertical axis shows different EEG electrodes. Each line shows how voltage in a given electrode varies over time. (C, D) Power Spectral Density (PSD) plots
of the example EEG recording before (left) and after (right) preprocessing. The x-axis represents frequency (Hz), and the y-axis shows spectral power (dB). Notably,
preprocessing reduced the large peak of noise at 60 Hz.
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Results

Baseline Analysis

None of the power or complexity features calculated from the baseline
(non-sedated) recordings were significant linear predictors of participants’
GOS-E scores. One complexity feature, Permutation LZC, yielded signifi-
cant differences between low and high GOS-E groups (U=30.0, p=0.048).
Permutation LZC is a complexity feature that looks at nonlinear signal vari-
ability in an EEG signal26. We did not find any other results of interest in
the baseline state, so we did not pursue further analysis of these recordings.

Difference Analysis

The perturbation of the brain under anesthesia (absolute difference be-
tween the baseline and sedated state) yielded several significant linear
trends. Although none of the power features were significant linear predic-
tors of participants’ GOS-E scores, we found seven complexity features that
were significantly correlated with GOS-E, including Approximate entropy
(a measure of pattern predictability designed for physiological data) and
Shannon entropy (a foundational entropy metric that assesses the amount
of information in a signal)27. All linear trends had a negative coefficient, in-
dicating that smaller changes in complexity between baseline and sedation
states are predictive of higher GOS-E. While many of these features yielded
strong linear trends, their cross-validated R2 values were poor, indicating
that the observed trends do not generalize well to new data.

There were significant differences between low and high GOS-E partici-
pants’ alpha power using a Mann-Whitney U test (U=30.0, p=0.048). We
found two complexity features that yielded significant GOS-E group differ-
ences. These results demonstrate that the perturbation of the brain under
anesthesia may predict patient recovery. While the complexity features had
a negative relationship with GOS-E (i.e., a smaller change in complexity
correlated with a higher GOS-E), alpha power had a positive trend; greater
differences in alpha power between baseline and sedation were associated
with greater recovery.

Sedation Analysis

Themost significant results, both linearly and with group differences, are in
the sedated state. Twelve complexity features had significant Pearson corre-
lations with participants’ GOS-E scores. Most of these trends persisted after
cross-validation, indicating good generalizability. Twelve complexity fea-
tures and three power features yielded significant differences between low
and high GOS-E groups. These included relative and absolute beta power,
relative delta power, Permutation entropy, and LZC among others (see Sup-
plementary Tables 2 and 3 for more examples).

Specifically, complexity features rate entropy and Lopez-Ruiz-Mancini-
Calbet Complexity (HC-LMC) separated all participants on a single-
subject level between recovered and non-recovered groups. Rate entropy
and HC-LMC had strong linear trends and high cross-validated R2 val-
ues of 0.503 and 0.566, respectively, indicating they are highly predictive
of patient recovery. Rate entropy positively correlated with good recovery,
whereas HC-LMC negatively correlated with recovery. These two relation-
ships are shown in Figure 2, and violin plots of the features separated into
GOS-E groups are shown in Figure 3. Violin plots provide a visual repre-
sentation of the distribution and variability of rate entropy and HC-LMC
across GOS-E groups, highlighting differences between recovered and non-
recovered patients. For example, in Figure 3, we see differences in rate en-
tropy and HC-LMC for low and high GOS-E groups, which express an in-
verse relationship between these features.

Figure 2. Relationships between EEG complexity features and patient recovery un-
der sedation. (Top Left) Rate entropy vs. GOS-E. A strong positive correlation in-
dicates that higher entropy rates are associated with better recovery. (Top Right)
Lopez-Ruiz-Mancini-Calbet Complexity (HC-LMC) vs. GOS-E. A strong negative corre-
lation suggests that lower HC-LMC values are predictive of better recovery. Pearson’s
correlation coefficient, line goodness-of-fit, and the linear relationship’s significance
are shown for each scatter plot. Histograms showing the distribution of each metric
across patients are shown under the scatter plots.

Figure 3. Comparison of EEG complexity features between patients with poor (GOS-
E < 7) and good (GOS-E ≥ 7) recovery outcomes. (Left) Violin plot of rate entropy in
the two recovery groups. Patients with better outcomes exhibit significantly higher
Rate Entropy values (Mann-WhitneyU=0.00,p=0.0025). (Right) Violin plot ofHC-LMC
across recovery groups. Patients with better outcomes show lower HC-LMC values
(Mann-WhitneyU=35.00, p=0.0025).

Logistic Regression

We found that the combination of HC-LMC and rate entropy, recorded
with sedation, gave the highest accuracy in logistic regression. The model
correctly classified 100% of cases, with an AUC-ROC of 1.00 (95%CI: 1.00-
1.00). Themodel performedworsewith additional EEG features, indicating
that the model favours simplicity over complexity. The permutation test p-
value was 0.0010 for AUC-ROC and 0.0020 for accuracy, both highly sig-
nificant results. These results suggest that the observed separability of low
and high GOS-E with HC-LMC and rate entropy is unlikely to be due to
chance.

Using the same logistic regression hyperparameters withHC-LMC and rate
entropy as features, we randomized the sedation dose for each participant.
After repeating the logistic regression 1000 times with random sedative
doses, the model correctly classified an average of 80.33% of cases (95%
CI: 70.72%-80.95%), with an AUC-ROC of 0.777 (95% CI: 0.769-0.785).
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Discussion

We explored the prognostic potential of various EEG features of spectral
power and complexity for both baseline (non-sedated) and sedated states,
considering whether baseline, sedation, or the difference between the two
states’ features (due to neural reconfiguration) was most predictive of re-
covery. We found that the baseline state has little prognostic power, and the
difference state had some predictive capability. However, the linear trends
seen in the difference state did not persist after validation, indicating they
may result from overfitting. We found some ability to discriminate between
low and high GOS-E in the difference state, suggesting that changes in the
brain with anesthesia may predict the recovery of consciousness. However,
more work is needed to validate these trends in larger sample sizes.

Overwhelmingly, we found themost substantial prognostic power in the se-
dated state. Many EEG complexity features and a few power features were
highly predictive of a participant’s recovery. These trends persisted after
cross-validation, indicating they are reliable and may generalize to other
epileptic patients. Rate entropy and HC-LMC had high predictive abili-
ties, separating participants into recovered and non-recovered groups with
100% accuracy. These results suggest that rate entropy and HC-LMC are
exceptionally indicative of an epileptic patient’s capacity for consciousness
and may serve as powerful prognostic tools in a PICU setting.

Even with dose randomization, we found good discriminative ability be-
tween low and high GOS-E. This result indicates that measuring EEG com-
plexity under sedation, regardless of the sedative dose, can help predict pa-
tient recovery. However, the accuracy of the logistic regression was greater
with a high sedative dose. Therefore, while any sedative infusion within the
typical PICUdosage range has prognostic capabilities with EEG complexity
analysis, higher sedative doses best predict recovery.

The complexity feature rate entropy is the time-resolved derivative of en-
tropy, a measure of the amount of information, or uncertainty, contained
in a signal28. We demonstrated that higher rates of change correlate to high
GOS-E, indicating that greater changes in entropy are associated with bet-
ter recovery. The brain reconfigures with injury; post-injury plasticity is
a compensatory mechanism that aids recovery29,30. Epilepsy and neuro-
plasticity are fundamentally interconnected—epilepsy can induce plastic-
ity, and the extent of neural reconfiguration influences epileptic progres-
sion31,32. Rate entropy may reflect the brain’s ability to reorganize and
adapt, serving as a proxy for epilepsy-induced neural plasticity. A brain
with greater entropic changes after injury may be more resilient, modifying
its activity patterns as an adaptive mechanism. High versatility and capac-
ity for change may therefore underlie a patient’s recovery of consciousness.
These results suggest that measuring EEG changes in entropy in patients
undergoing anesthesia can accurately predict their epileptic progression.

HC-LMC is a complexity feature that assesses the amount of structured pat-
terns within a signal33. At low values of HC-LMC, a system is either highly
ordered or disordered, whereas higher values yield a greater balance of or-
der and disorder34. Interestingly, better recovery is correlated with lower
values of HC-LMC—fewer structured patterns. Under anesthesia, neural
complexity is lessened. Patients who maintained a balance of order and
disorder under anesthesia had a lower capacity for consciousness, so the
ability to sustain asymmetry of these measures with sedation may be cru-
cial for recovery. Epilepsy induces bursts of brain activity and structured
patterns in the signal, which are associated with higher HC-LMC. There-
fore, participants with greater HC-LMC may have more epileptic activity
and worse recovery. Although we demonstrated that HC-LMC has great
potential to predict the recovery of consciousness, it is an understudied
complexity feature in clinical contexts. These results highlight the need for
future research to understand how HC-LMC reflects brain dynamics and
to assess its utility as a predictive marker of clinical outcomes.

We demonstrated that rate entropy and HC-LMC can predict the recov-
ery of epileptic pediatric patients in this cohort with 100% accuracy. These
are not simple features of neural complexity, but intricate measures of the
rate of entropic change and the balance of order and disorder. Accord-
ingly, higher complexity is not always associated with better recovery—
we observed a negative trend between GOS-E and HC-LMC. Our results
demonstrate that EEG features under sedation can reveal a patient’s capac-
ity for consciousness, building on current findings. The high accuracy of
the logistic regression highlights EEG as a powerful and accessible tool to
predict epilepsy outcomes. EEG markers of consciousness, such as rate en-
tropy and HC-LMC, could enhance clinical decision-making and improve
our understanding of the neural mechanisms underlying recovery.

Limitations and Future Directions

While the results suggest that rate entropy and HC-LMC have strong prog-
nostic ability, these conclusions are limited by the small sample size. We
tested 12 participants; more work is needed to verify if the observed trends
generalize to larger samples. Further, we had unbalanced groups: 5 par-
ticipants with low GOS-E and 7 participants with high GOS-E. We had no
participants with a GOS-E score of 2, 5, or 6. To substantiate these findings,
our results should be validated with a greater diversity of GOS-E scores,
particularly in the worse recovery group.

We showed that rate entropy and HC-LMC are powerful markers in the
prognosis of epileptic pediatric patients. Future studies could investigate
these markers in other etiologies—are they specific to epilepsy, or do they
predict recovery in different conditions? Further, it would be valuable to
explore these EEG features in a healthy control pediatric sample. These
results could serve as a baseline for evaluating a patient’s degree of altered
neural activity.

Conclusion

We established rate entropy and HC-LMC as accurate and valuable EEG
complexity features for predicting recovery in epileptic pediatric patients
in the PICU. These features give insight into dynamic changes in entropy
and the brain’s intricate balance between order and disorder. Our findings
reveal that the sedated state is the most predictive of recovery, highlight-
ing the prognostic value of EEG analysis under anesthesia. Rate entropy
and HC-LMC are clinically relevant features that perfectly classify recov-
ery outcomes. They may reflect fundamental neural mechanisms, such as
plasticity and adaptability, that are crucial for a patient’s capacity for con-
sciousness. The integration of these features into clinical decision-making
could advance accessible prognostication, offering clinicians effective and
accurate tools to assess recovery in epileptic patients.

Acknowledgements

This project was supported by the NSERCUSRA grant. Thank you to Mark
Greenberg and Kevin Jones, who collected the McMaster Children’s Hos-
pital EEG recordings. This project would not have been possible without
their fundamental contributions.

Supplementary Material

Supplementary material referenced in the text of this article may be found
online at https://doi.org/10.26443/msurj.v1i1.288.

McGill Science Undergraduate Research Journal —msurjonline.mcgill.ca Page 6

https://doi.org/10.26443/msurj.v1i1.288
https://msurjonline.mcgill.ca


References

1. Mertiri, L., Rossi, A., Huisman, L. M. & Huisman, T. A. in Diseases of
the Brain, Head and Neck, Spine 2024-2027: Diagnostic Imaging (eds
Kubik-Huch, R. A. & Roos, J. E.) 143–156 (Springer, 2024). https:
//doi.org/10.1007/978-3-031-50675-8_14

2. Albertini, F., Bresson, V., Tardieu, S., Milh, M. & Chabrol, B. Pediatric
emergency room visits for neurological conditions: Description and
use of pediatric neurologist advice. Arch. Pediatr. 27, 416–422 (2020).
https://doi.org/10.1016/j.arcped.2020.09.005

3. Tononi, G. & Edelman, G. M. Consciousness
and complexity. Science 282, 1846–1851 (1998).
https://doi.org/10.1126/science.282.5395.1846

4. Schartner, M. et al. Complexity of multi-dimensional
spontaneous EEG decreases during propofol induced
general anaesthesia. PLOS ONE 10, e0133532 (2015).
https://doi.org/10.1371/journal.pone.0133532

5. Varley, T. F. et al. Consciousness & brain functional com-
plexity in propofol anaesthesia. Sci. Rep. 10, 1018 (2020).
https://doi.org/10.1038/s41598-020-57695-3

6. Rasulo, F. A. et al. Processed electroencephalogram-based monitor-
ing to guide sedation in critically ill adult patients: recommendations
from an international expert panel-based consensus. Neurocrit. care
38, 296–311 (2023). https://doi.org/10.1007/s12028-022-01565-5

7. Egbuta, C. & Mason, K. P. Current state of analgesia and sedation
in the pediatric intensive care unit. J. Clin. Med. 10, 1847 (2021).
https://doi.org/10.3390/jcm10091847

8. Maschke, C., Duclos, C. & Blain-Moraes, S. Paradoxical mark-
ers of conscious levels: effects of propofol on patients in disor-
ders of consciousness. Front. Hum. Neurosci. 16, 992649 (2022).
https://doi.org/10.3389/fnhum.2022.992649

9. Gunawardena, S., Chikkannaiah, M., Stolfi, A. & Kumar,
G. Utility of electroencephalogram in the pediatric emer-
gency department. Am. J. Emerg. Med. 54, 26–29 (2022).
https://doi.org/10.1016/j.ajem.2022.01.045

10. El Youssef,N. et al. Consciousness alteration in focal epilepsy is related
to loss of signal complexity and information processing. Sci. Rep. 12,
22276 (2022). https://doi.org/10.1038/s41598-022-25861-4

11. Azabou, E. et al. Value andmechanisms of EEG reactivity in the prog-
nosis of patients with impaired consciousness: a systematic review.
Crit. Care 22, 1–15 (2018). https://doi.org/10.1186/s13054-018-2104-
z

12. Pauli, R., O’Donnell, A. & Cruse, D. Resting-state electroen-
cephalography for prognosis in disorders of consciousness fol-
lowing traumatic brain injury. Front. Neurol. 11, 586945 (2020).
https://doi.org/10.3389/fneur.2020.586945

13. Sarasso, S. et al. Consciousness and complexity during unresponsive-
ness induced by propofol, xenon, and ketamine. Curr. Biol. 25, 3099–
3105 (2015). https://doi.org/10.1016/j.cub.2015.10.014

14. Colombo, M. A. et al. Beyond alpha power: EEG spatial and spectral
gradients robustly stratify disorders of consciousness. Cereb. Cortex
33, 7193–7210 (2023). https://doi.org/10.1093/cercor/bhad031

15. Casali, A. G. et al. A theoretically based index of con-
sciousness independent of sensory processing and be-
havior. Sci. Transl. Med. 5, 198ra105–198ra105 (2013).
https://doi.org/10.1126/scitranslmed.3006294

16. Sinitsyn, D. O. et al. Detecting the potential for consciousness in un-
responsive patients using the perturbational complexity index. Brain
Sci. 10, 917 (2020). https://doi.org/10.3390/brainsci10120917

17. Comolatti, R. et al. A fast and general method to empirically
estimate the complexity of brain responses to transcranial and
intracranial stimulations. Brain stimul. 12, 1280–1289 (2019).
https://doi.org/10.1016/j.brs.2019.05.013

18. Maschke, C. et al. Critical dynamics in spontaneous EEG predict
anesthetic-induced loss of consciousness and perturbational com-
plexity.Commun. Biol. 7, 946 (2024). https://doi.org/10.1038/s42003-
024-06613-8

19. Shin, D. J. et al. Propofol is an allosteric agonist with multiple binding
sites on concatemeric ternary GABAA receptors.Mol. Pharmacol. 93,
178–189 (2018). https://doi.org/10.1124/mol.117.110403

20. Eom, W. et al. The effects of midazolam and sevoflurane on
the GABA A receptors with alternatively spliced variants of
the γ2 subunit. Korean J. Anesthesiol. 60, 109–118 (2011).
https://doi.org/10.4097/kjae.2011.60.2.109

21. Wilson, L. et al. A manual for the glasgow outcome scale-
extended interview. J. Neurotrauma 38, 2435–2446 (2021).
https://doi.org/10.1089/neu.2020.7527

22. Miyake, W. et al. Electroencephalographic response following
midazolam-induced general anesthesia: relationship to plasma and
effect-site midazolam concentrations. J. Anesth. 24, 386–393 (2010).
https://doi.org/10.1007/s00540-010-0907-4

23. Numan, T. et al. Resting state EEG characteristics during sedation
withmidazolam or propofol in older subjects.Clin. EEGNeurosci. 50,
436–443 (2019). https://doi.org/10.1177/1550059419838938

24. Jas, M., Engemann, D. A., Bekhti, Y., Raimondo, F. &
Gramfort, A. Autoreject: Automated artifact rejection for
MEG and EEG data. NeuroImage 159, 417–429 (2017).
https://doi.org/10.1016/j.neuroimage.2017.06.030

25. Donoghue, T. et al. Parameterizing neural power spectra into peri-
odic and aperiodic components.Nat. Neurosci. 23, 1655–1665 (2020).
https://doi.org/10.1038/s41593-020-00744-x

26. Bai, Y., Liang, Z., Li, X., Voss, L. J. & Sleigh, J. W. Per-
mutation Lempel–Ziv complexity measure of electroencephalo-
gram in GABAergic anaesthetics. Physiol. Meas. 36, 2483 (2015).
https://doi.org/10.1088/0967-3334/36/12/2483

27. Delgado-Bonal, A. & Marshak, A. Approximate entropy and sam-
ple entropy: A comprehensive tutorial. Entropy 21, 541 (2019).
https://doi.org/10.3390/e21060541

28. Shannon, C. E. A mathematical theory of communication. Bell
Labs Tech. J. 27, 379–423 (1948). https://doi.org/10.1002/j.1538-
7305.1948.tb01338.x

29. Nudo, R. J. Recovery after brain injury: mechanisms
and principles. Front. Hum. Neurosci. 7, 887 (2013).
https://doi.org/10.3389/fnhum.2013.00887

30. Su, Y. S., Veeravagu, A. & Grant, G. in Translational Research in Trau-
matic Brain Injury (eds Laskowitz, D. & Grant, G.) 163 (CRC Press,
2016).

31. Jarero-Basulto, J. J. et al. Interactions between epilepsy and plasticity.
Pharmaceuticals 11, 17 (2018). https://doi.org/10.3390/ph11010017

32. Sutula, T. P. Mechanisms of epilepsy progression: current
theories and perspectives from neuroplasticity in adult-
hood and development. Epilepsy Res. 60, 161–171 (2004).
https://doi.org/10.1016/j.eplepsyres.2004.07.001

33. Lopez-Ruiz, R., Mancini, H. L. & Calbet, X. A statisti-
cal measure of complexity. Phys. Lett. 209, 321–326 (1995).
https://doi.org/10.1016/0375-9601(95)00867-5

Page 7 Volume 20 | Issue 1 | April 2025

https://doi.org/10.1007/978-3-031-50675-8_14
https://doi.org/10.1007/978-3-031-50675-8_14
https://doi.org/10.1016/j.arcped.2020.09.005
https://doi.org/10.1126/science.282.5395.1846
https://doi.org/10.1371/journal.pone.0133532
https://doi.org/10.1038/s41598-020-57695-3
https://doi.org/10.1007/s12028-022-01565-5
https://doi.org/10.3390/jcm10091847
https://doi.org/10.3389/fnhum.2022.992649
https://doi.org/10.1016/j.ajem.2022.01.045
https://doi.org/10.1038/s41598-022-25861-4
https://doi.org/10.1186/s13054-018-2104-z
https://doi.org/10.1186/s13054-018-2104-z
https://doi.org/10.3389/fneur.2020.586945
https://doi.org/10.1016/j.cub.2015.10.014
https://doi.org/10.1093/cercor/bhad031
https://doi.org/10.1126/scitranslmed.3006294
https://doi.org/10.3390/brainsci10120917
https://doi.org/10.1016/j.brs.2019.05.013
https://doi.org/10.1038/s42003-024-06613-8
https://doi.org/10.1038/s42003-024-06613-8
https://doi.org/10.1124/mol.117.110403
https://doi.org/10.4097/kjae.2011.60.2.109
https://doi.org/10.1089/neu.2020.7527
https://doi.org/10.1007/s00540-010-0907-4
https://doi.org/10.1177/1550059419838938
https://doi.org/10.1016/j.neuroimage.2017.06.030
https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.1088/0967-3334/36/12/2483
https://doi.org/10.3390/e21060541
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.3389/fnhum.2013.00887
https://doi.org/10.3390/ph11010017
https://doi.org/10.1016/j.eplepsyres.2004.07.001
https://doi.org/10.1016/0375-9601(95)00867-5


34. López-Ruiz, R. Shannon information, LMC complexity and Rényi
entropies: a straightforward approach. Biophys. Chem. 115, 215–218
(2005). https://doi.org/10.1016/j.bpc.2004.12.035

McGill Science Undergraduate Research Journal —msurjonline.mcgill.ca Page 8

https://doi.org/10.1016/j.bpc.2004.12.035
https://msurjonline.mcgill.ca

	Introduction
	Methods
	Participant Selection
	Sedation Considerations
	EEG Preprocessing
	EEG Analysis

	Results
	Baseline Analysis
	Difference Analysis
	Sedation Analysis
	Logistic Regression

	Discussion
	Limitations and Future Directions
	Conclusion
	Acknowledgements
	Supplementary Material

