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Abstract

This paper is inspired by Aubin’s 1979 result, which established that the best constant in the Sobolev inequality
on the n-sphere, Sn, can be improved under the condition of vanishing first-order moments. Recent advance-
mentsbyHangandWang (2021) showed thatAubin’s improvement canbegeneralized toarbitraryhigher-order
moments. We further extend Hang and Wang’s results to the Hardy-Sobolev inequality on Sn by deriving an
associated concentration-compactness principle and imposing similar moment constraints. Finally, we briefly
outline a framework for extending these results to higher-order Sobolev spaces.

Introduction & Context

Sobolev Inequalities

Sobolev inequalities are fundamental tools in the study of mathematical
analysis, geometry, and partial differential equations. They play a crucial
role in embedding theorems, isoperimetric inequalities, and in ensuring
the existence, uniqueness, and regularity of solutions to partial differential
equations. Essentially, they establish a relationship between the Lp norms
of functions and their derivatives, allowing one to trade regularity for in-
tegrability: a function that is sufficiently smooth (regularity) in Lp is also
guaranteed to belong to a higher Lq space (integrability), where q > p.

To precisely state the classical Sobolev inequality, we first introduce the
necessary function spaces. Let n ≥ 2 and let 1 ≤ p < n. Denote by
D(Rn) = C∞

c (Rn) the space of smooth functions with compact support
and let D1,p(Rn) be its completion under the norm

‖u‖ =

(∫
Rn

|∇u|p
)1/p

. (1)

This paper will primarily focus on functions in the Sobolev space W 1,p,
but we will state Euclidean theorems in the larger space D1,p for greater
generality. Denote by p∗ = np/(n− p) the critical Sobolev exponent. The
classical Sobolev inequality onRn, as proven by Sobolev [1, 2], is as follows:

Theorem 1 (Euclidean Sobolev Inequality). There exists a constantCn,p >
0 such that, for any u ∈ D1,p(Rn),

(∫
Rn

|u|p
∗
dx

)1/p∗

≤ Cn,p

(∫
Rn

|∇u|p dx

)1/p

. (2)

In the study of Sobolev inequalities, we are often interested in determining
the smallest possible value ofCn,p for which Theorem 1 remains valid. This
minimal value forCn,p is often referred to as the best Sobolev constant. We
will denote this best constant byKn,p. Rodemich [3], Aubin [4], and Talenti

[5] proved that the best constant for Cn,p exists and computed its value:

Kn,p = π−1/2n−1/p

(
p− 1

n− p

)1−1/p(
Γ(n/2 + 1)Γ(n)

Γ (n/p) Γ (n− n/p+ 1)

)1/n

.

Aubin [6] later extended the Euclidean Sobolev inequality (Theorem 1) to
smooth, compact, Riemannian manifolds without boundary. The result is
as follows:

Theorem 2 (Riemannian Sobolev Inequality). Let (M, g) be a smooth,
closed, Riemannian n-manifold. Let 1 ≤ p < n and let p∗ = np/(n− p).
Then, for any ε > 0, there exists a constant Cε > 0 that depends only on ε,
M , and g such that, for any u ∈ W 1,p(M),

(∫
M

|u|p
∗
dvg

)p/p∗

≤ (Kp
n,p + ε)

∫
M

|∇gu|p dvg + Cε

∫
M

|u|p dvg.

(3)

where ∇g is the gradient with respect to the metric g and dvg is the volume
form onM .

Note that, for any Riemannian manifold, the Sobolev constant Kp
n,p + ε

can be made arbitrarily close to Kp
n,p by choosing ε > 0 to be sufficiently

small. However, unlike in the Euclidean case, the best Sobolev constant
Kp

n,p cannot be achieved without the accompanying constant Cε diverging.

Let Sn denote the n-sphere, the  n-dimensional generalization of the 1-
dimensional circle and the 2-dimensional sphere to any non-negative in-
teger n. Aubin [7] showed that the Sobolev constant Kp

n,p+ε on Sn can be
improved to Kp

n,p/2
p/n + ε under the constraint that the first-order mo-

ments of |u|p
∗

vanish. In other words, if the function |u|p
∗

satisfies certain
symmetry conditions, the value of the Sobolev constant Kp

n,p + ε can be
lowered to Kp

n,p/2
p/n + ε. A precise statement of this result is as follows:

Theorem 3 (Aubin [7]). Let (Sn, g0) denote the n-sphere equipped with the
round metric. Let 1 < p < n and let p∗ = np/(n − p). Then, for any

Page 19 Volume 20 | Issue 1 | April 2025

mailto:simon.chen2@mail.mcgill.ca
https://doi.org/10.26443/msurj.v1i1.253
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ε > 0, there exists a constant Cε > 0 that depends only on ε such that(∫
Sn

|u|p
∗
dvg0

)p/p∗

≤
(
Kp

n,p

2p/n
+ ε

)∫
Sn

|∇u|p dvg0

+ Cε

∫
Sn

|u|p dvg0 , (4)

for any u ∈ W 1,p(Sn) that satisfies∫
Sn

xi|u|p
∗
dvg0 = 0 (5)

for i = 1, 2, ..., n+ 1, where (x1, ..., xn+1) ∈ Rn+1.

Hang and Wang [8] further generalized Theorem 3 to higher-order mo-
ments. For consistency, we will follow their notation. In particular, denote
by P̊m the set of all polynomials f : Rn+1 → R with degree at most m
such that ∫

Sn
f dvg0 = 0. (6)

Additionally, for 0 < θ < 1 and m ∈ N, define

Θ(m, θ, n) = inf

{∑
i

νθ
i : ν probability measure supported on count-

ably many points {ξi} ⊆ Sn such that
∫
Sn

f dν = 0 for

all f ∈ P̊m, νi := ν({ξi})

}
. (7)

Hang and Wang’s [8] generalization of Aubin’s improvement (Theorem 3)
to higher-order moments is then as follows:

Theorem 4 (Hang and Wang [8]). Let (Sn, g0) denote the n-sphere
equipped with the round metric. Let 1 < p < n, let m ∈ N, and let
p∗ = np/(n − p). Then, for any ε > 0, there exists a constant Cε > 0
that depends only on ε such that(∫

Sn
|u|p

∗
dvg0

)p/p∗

≤
(

Kp
n,p

Θ(m, p/p∗, n)
+ ε

)∫
Sn

|∇u|p dvg0

+ Cε

∫
Sn

|u|p dvg0 , (8)

for any u ∈ W 1,p(Sn) that satisfies∫
Sn

f |u|p
∗
dvg0 = 0 (9)

for all f ∈ P̊m.

Hang and Wang [8] also showed that Θ(1, p/p∗, n) = 2p/n when m = 1,
recovering Aubin’s [7] original result (Theorem 3).

Hardy-Sobolev Inequalities

The Hardy-Sobolev inequality extends the Sobolev inequality to cases in-
volving weighted integrals, where the integrand is multiplied by a weight
function. In this paper, we will focus on weight functions of the form
dg(x, x0)

α, where dg(·, x0) denotes the Riemannian distance from a fixed
point x0 ∈ M . For the Euclidean case, this simplifies to dg(x, x0)

α =
|x−x0|α, and we may setx0 = 0without loss of generality. Let 1 < p < n,
let 0 < α < p, and denote the critical Hardy-Sobolev exponent by
p∗(α) = (n − α)p/(n − p). Under these conditions, the Hardy-Sobolev
inequality on Rn is as follows [9, 10]:

Theorem 5 (Euclidean Hardy-Sobolev Inequality). There exists a constant
Cn,p,α > 0 such that, for any u ∈ D1,p(Rn),(∫

Rn

|u|p
∗(α)

|x|α dx

)1/p∗(α)

≤ Cn,p,α

(∫
Rn

|∇u|p dx

)1/p

. (10)

Ghoussoub and Yuan [11] showed that the best constant for Cn,p,α can be
attained. We denote this best constant by Kn,p,α. Egnell [12] computed its
value, which is given by [13]

Kn,p,α = (n− α)(n−p)/(n−α)

(
n− p

p− 1

)p−1

×
(
Γ((p(n− α) + p− n)/(p− α))

Γ(p(n− α)/(p− α))

)(p−α)/(n−α)

×
(
nπn/2Γ((n− α)/(p− α))

Γ(n/2 + 1)

)(p−α)/(n−α)

. (11)

Jaber [14], and Chen and Liu [15] later extended the Euclidean Hardy-
Sobolev inequality (Theorem 5) to smooth, compact, Riemannian mani-
folds without boundary. We state their result:

Theorem 6 (Riemannian Hardy-Sobolev Inequality). Let (M, g) be a
smooth, closed, Riemannian n-manifold and fix some x0 ∈ M . Let 1 <
p < n, let 0 < α < p, and let p∗(α) = (n − α)p/(n − p). Then, for any
ε > 0, there exists a constantCε > 0 that depends only on ε,M , and g such
that, for any u ∈ W 1,p(M),(∫

M

|u|p
∗(α)

dg(x, x0)α
dvg

)p/p∗(α)

≤ (Kp
n,p,α + ε)

∫
M

|∇gu|p dvg

+ Cε

∫
M

|u|p dvg, (12)

where dg is the Riemannian distance on (M, g).

The goal of this paper is to improve the Hardy-Sobolev inequality (Theorem
6) on Sn by imposing moment constraints analogous to those used by Hang
and Wang [8] to improve the standard Sobolev inequality.

Main Result

The following result presents an extension of Theorem 4 to the Hardy-
Sobolev inequality:

Theorem7. Let (Sn, g0) denote then-sphere equippedwith the roundmetric
and fix some x0 ∈ Sn. Let 1 < p < n, let 0 < α < p, letm ∈ N, and let
p∗(α) = (n − α)p/(n − p). Then, for any ε > 0, there exists a constant
Cε > 0 that depends only on ε such that(∫

Sn

|u|p
∗(α)

d(x, x0)α
dvg0

)p/p∗(α)

≤
(

Kp
n,p,α

Θ(m, p/p∗(α), n)
+ ε

)
×
∫
Sn

|∇u|p dvg0

+ Cε

∫
Sn

|u|p dvg0 , (13)

for any u ∈ W 1,p(Sn) that satisfies∫
Sn

f
|u|p

∗(α)

d(x, x0)α
dvg0 = 0 (14)

for all f ∈ P̊m.
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To prove this theorem, we take inspiration from Hang and Wang [8] and
instead prove the following, more general statement:

Theorem8. Let (Sn, g0) denote then-sphere equippedwith the roundmetric
and fix some x0 ∈ Sn. Let 1 < p < n, let 0 < α < p, let m ∈ N, let
p∗(α) = (n− α)p/(n− p), and let T : P̊m → R>0 be some map. Then,
for any ε > 0, there exists a constant Cε,T > 0 that depends only on ε and
T such that(∫

Sn

|u|p
∗(α)

dg(x, x0)α
dvg0

)p/p∗(α)

≤
(

Kp
n,p,α

Θ(m, p/p∗(α), n)
+ ε

)
×
∫
Sn

|∇u|p dvg0

+ Cε,T

∫
Sn

|u|p dvg0 , (15)

for any u ∈ W 1,p(Sn) that satisfies∫
Sn

f
|u|p

∗(α)

dg(x, x0)α
dvg0 ≤ T (f)

(∫
Sn

|u|p dvg0

)p∗(α)/p

(16)

for all f ∈ P̊m.

Since any u ∈ W 1,p(Sn) satisfying Equation 14 automatically satisfies
Equation 16, Theorem 7 is recovered by taking the limit as T (f) → 0.

A Concentration-Compactness Principle

The proof of Theorem 8 requires a concentration-compactness princi-
ple, similar to those introduced by Lions [10, 16]. The concentration-
compactness principle is a key tool in the calculus of variations designed
to address the lack of compactness in infinite-dimensional function spaces
such as Sobolev spaces. Unlike in finite-dimensional spaces, where every
bounded sequence has a convergent subsequence, sequences in infinite-
dimensional spaces may fail to converge due to their mass either con-
centrating at specific points or escaping to infinity. The concentration-
compactness principle provides a precise description of this phenomenon:
any loss of compactness is restricted to a discrete, at most countable set of
points. This weaker notion of compactness is often sufficient to analyze
sequences that would otherwise be too irregular to handle. The classical
concentration-compactness principle on Rn is given by Lemma I.1 in Li-
ons [16]. A variant of this principle specifically associated to the Euclidean
Hardy-Sobolev inequality is given by the following result:

Theorem 9 (Lemma 2.4 in Lions [10]). Let 1 < p < n and let (uk) be
a bounded sequence in D1,p(Rn). Suppose that uk → u pointwise almost
everywhere, the sequence of measures (|∇uk|p dx) is tight, and

|∇uk|p dx ⇀ µ, (17)

|uk|p
∗(α)

|x|α dx ⇀ ν, (18)

where µ and ν are some measures on Rn. Then there exists a non-negative
real number ν0 ∈ R such that

ν =
|u|p

∗(α)

|x|α dx+ ν0δ0, (19)

µ ≥ |∇u|p dx+ K−p
n,p,αν

p/p∗(α)
0 δ0. (20)

We require a generalization of Theorem 9 to smooth, closed, Riemannian
manifolds. The result is as follows:

Theorem 10. Let (M, g) be a smooth, closed, Riemannian n-manifold and
fix some x0 ∈ M . Let 1 < p < n and let (uk) be a bounded sequence in
W 1,p(M). Suppose that uk → u pointwise almost everywhere and that

|∇guk|p dvg ⇀ µ, (21)

|uk|p
∗(α)

dg(x, x0)α
dvg ⇀ ν, (22)

where µ and ν are some measures on M . Then there exists a non-negative
real number ν0 ∈ R such that

ν =
|u|p

∗(α)

dg(x, x0)α
dvg + ν0δx0 , (23)

µ ≥ |∇gu|p dvg + K−p
n,p,αν

p/p∗(α)
0 δx0 . (24)

Before we prove this concentration-compactness principle, we first state
two lemmas. The first is a useful inequality, and the second is related to
concentration-compactness on manifolds.

Lemma 1. Let x, y ∈ R, and let a ≥ 1. Then,

||x|a − |y|a| ≤ a(|x|a−1 + |y|a−1)|x− y|. (25)

Proof. The proof is trivial if either x = 0 or y = 0. Suppose then that
x 6= 0 and y 6= 0. Consider the function f(t) = ta. By the mean value
theorem, there exists a z ∈ R between |x| and |y| such that

||x|a − |y|a| = |aza−1(|x| − |y|)|

= aza−1||x| − |y||.

Since the map t 7→ ta−1 is increasing for a ≥ 1 and z lies between |x| and
|y|, it follows that

||x|a − |y|a| ≤ amax{|x|a−1, |y|a−1}||x| − |y||

≤ a(|x|a−1 + |y|a−1)||x| − |y||.

By the reverse triangle inequality,

||x|a − |y|a| ≤ a(|x|a−1 + |y|a−1)|x− y|.

�

Lemma 2 (Lions [16]). Let (M, g) be a smooth, closed, Riemannian n-
manifold. Let µ and ν be two bounded, non-negative measures on M and
let 1 ≤ p < q ≤ ∞. Suppose that there exists a constant C0 ≥ 0 such that,
for any ϕ ∈ C∞

c (M), the measures satisfy(∫
M

|ϕ|q dν
)1/q

≤ C0

(∫
M

|ϕ|p dµ

)1/p

. (26)

Then there exists an at-most countable set I , a set of distinct points {xi}i∈I
inM , and positive numbers {νi}i∈I such that

ν =
∑
i∈I

νiδxi , (27)

µ ≥ C−p
0

∑
i∈I

ν
p/q
i δxi . (28)

In particular, ∑
i∈I

ν
p/q
i < ∞. (29)
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Although Lions [16] proved the above lemma inRn, it can be easily adapted
to manifolds since the proof in Rn does not make use of any properties
unique to Euclidean space. We now prove Theorem 10:

Proof of Theorem 10. Let vk := uk − u. Then vk → 0 pointwise almost
everywhere. Suppose also that

|∇gvk|p dvg ⇀ µ̃, (30)

|vk|p
∗(α)

dg(x, x0)α
dvg ⇀ ν̃, (31)

where µ̃ and ν̃ are some bounded, non-negative measures on M .

We first prove the condition on ν. Let ϕ ∈ C∞
c (M). Then ϕvk ∈

W 1,p(M). By the Riemannian Hardy-Sobolev inequality (Theorem 6),(∫
M

|ϕvk|p
∗(α)

dg(x, x0)α
dvg

)p/p∗(α)

≤ (Kp
n,p,α + ε)

∫
M

|∇g(ϕvk)|p dvg

+ Cε

∫
M

|ϕvk|p dvg. (32)

In the limit as k → ∞, the left-hand side of Equation 32 goes to

lim
k→∞

(∫
M

|ϕvk|p
∗(α)

dg(x, x0)α
dvg

)p/p∗(α)

=

(∫
M

|ϕ|p
∗(α) dν̃

)p/p∗(α)

.

We estimate the first term on the right-hand side of Equation 32 using
Minkowski’s inequality:(∫

M

|∇g(ϕvk)|p dvg

)1/p

≤
(∫

M

(|∇gϕ||vk|+ |ϕ||∇gvk|)p dvg

)1/p

≤
(∫

M

|∇gϕ|p|vk|p dvg

)1/p

+

(∫
M

|ϕ|p|∇gvk|p dvg

)1/p

.

Then, ∣∣∣∣∣
(∫

M

|∇g(ϕvk)|p dvg

)1/p

−
(∫

M

|ϕ|p|∇gvk|p dvg

)1/p
∣∣∣∣∣

≤
(∫

M

|∇gϕ||vk|p dvg

)1/p

.

Since ϕ is smooth and has compact support, its gradient is bounded on M
by some constant C > 0,∣∣∣∣∣

(∫
M

|∇g(ϕvk)|p dvg

)1/p

−
(∫

M

|ϕ|p|∇gvk|p dvg

)1/p
∣∣∣∣∣

≤ C

(∫
M

|vk|p dvg

)1/p

.

Since (vk) is a bounded sequence in W 1,p(M) and vk → 0 pointwise al-
most everywhere, then vk ⇀ 0 in W 1,p(M). Since 1 < p < p∗, it follows
by the Rellich-Kondrachov theorem [17, 18] that vk → 0 in Lp(M). Then,
in the limit as k → ∞, we have

lim
k→∞

∣∣∣∣∣
(∫

M

|∇g(ϕvk)|p dvg

)1/p

−
(∫

M

|ϕ|p|∇gvk|p dvg

)1/p
∣∣∣∣∣ = 0.

Hence, the first term on the right-hand side of Equation 32 goes to

lim
k→∞

∫
M

|∇g(ϕvk)|p dvg = lim
k→∞

∫
M

|ϕ|p|∇gvk|p dvg

=

∫
M

|ϕ|p dµ̃.

Similarly, the second term on the right-hand side of Equation 32 goes to
zero. Combining these results, we obtain

(∫
M

|ϕ|p
∗(α) dν̃

)1/p∗(α)

≤ (Kp
n,p,α + ε)1/p

(∫
M

|ϕ|p dµ̃

)1/p

.

Since this is true for all ε > 0,(∫
M

|ϕ|p
∗(α) dν̃

)1/p∗(α)

≤ Kn,p,α

(∫
M

|ϕ|p dµ̃

)1/p

. (33)

It follows immediately from Lemma 2 that there exists an at-most countable
set I , a set of distinct points {xi}i∈I in M , and positive numbers {ν̃i}i∈I
such that

ν̃ =
∑
i∈I

ν̃iδxi , (34)

µ̃ ≥ K−p
n,p,α

∑
i∈I

ν̃
p/p∗(α)
i δxi . (35)

And, in particular, ∑
i∈I

ν̃
p/p∗(α)
i < ∞. (36)

Furthermore, let ϕ ∈ C∞
c (M). By the triangle inequality,∣∣∣∣∣

∫
M

ϕ
|vk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg +

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣
≤
∫
M

|ϕ|

∣∣∣∣∣ |vk|p
∗(α)

dg(x, x0)α
− |uk|p

∗(α)

dg(x, x0)α
+

|u|p
∗(α)

dg(x, x0)α

∣∣∣∣∣ dvg.
Since ϕ is smooth and has compact support, there exists a constant C > 0
such that∣∣∣∣∣
∫
M

ϕ
|vk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg +

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣
≤ C

∫
M

∣∣∣∣∣ |vk|p
∗(α)

dg(x, x0)α
− |uk|p

∗(α)

dg(x, x0)α
+

|u|p
∗(α)

dg(x, x0)α

∣∣∣∣∣ dvg.
Consider the sequence (fk) given by fk = |uk|/dg(x, x0)

α/p∗(α). For
simplicity, we also write f = |u|/dg(x, x0)

α/p∗(α). Then,∣∣∣∣∣
∫
M

ϕ
|vk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg +

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣
≤ C

∫
M

∣∣∣|fk − f |p
∗(α) − |fk|p

∗(α) + |f |p
∗(α)

∣∣∣ dvg.
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Since uk → u pointwise almost everywhere, it follows immediately that
fk → f pointwise almost everywhere. Observe also that, by the Rieman-
nian Hardy-Sobolev inequality (Theorem 6),(∫

M

|fk|p
∗(α) dvg

)p/p∗(α)

=

(∫
M

|uk|p
∗(α)

dg(x, x0)α
dvg

)p/p∗(α)

≤ (Kp
n,p,α + ε)

∫
M

|∇guk|p dvg

+ Cε

∫
M

|uk|p dvg.

Since (uk) is a bounded sequence in W 1,p(M), we find that (fk)must also
be a bounded sequence in Lp∗(α). Then, by the Brézis-Lieb lemma [19],

lim
k→∞

∫
M

∣∣∣|fk − f |p
∗(α) − |fk|p

∗(α) + |f |p
∗(α)

∣∣∣ dvg = 0.

Hence, in the limit as k → ∞, we have

lim
k→∞

∣∣∣∣∣
∫
M

ϕ
|vk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg

+

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣ = 0.

Equivalently,

ν̃ = ν − |u|p
∗(α)

dg(x, x0)α
dvg.

Renaming each ν̃i to νi and rearranging the terms,

ν =
|u|p

∗(α)

dg(x, x0)α
dvg +

∑
i∈I

νiδxi . (37)

It remains to show that the set I is a singleton. Let ϕ ∈ C∞
c (M) be such

that supp(ϕ) ⊆ M\{x0}. By the triangle inequality,∣∣∣∣∣
∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣
≤
∫

supp(ϕ)

|ϕ|

∣∣∣∣∣ |uk|p
∗(α)

dg(x, x0)α
− |u|p

∗(α)

dg(x, x0)α

∣∣∣∣∣ dvg.
Since ϕ is smooth and has compact support, there exists a constant C > 0
such that ∣∣∣∣∣

∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣
≤ C

∫
supp(ϕ)

∣∣∣∣∣ |uk|p
∗(α)

dg(x, x0)α
− |u|p

∗(α)

dg(x, x0)α

∣∣∣∣∣ dvg.
Since supp(ϕ) ⊆ M\{x0} is compact and dg(x, x0) is continuous and
positive on M\{x0}, the function 1/dg(x, x0)

α achieves a finite maxi-
mum on supp(ϕ). We absorb this value into the constant C . Then,∣∣∣∣∣

∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣
≤ C

∫
supp(ϕ)

∣∣∣|uk|p
∗(α) − |u|p

∗(α)
∣∣∣ dvg.

By applying Lemma 1 and absorbing a factor of p∗(α) into the constant C ,
we obtain∣∣∣∣∣

∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣
≤ C

∫
supp(ϕ)

(
|uk|p

∗(α)−1 + |u|p
∗(α)−1

)
|uk − u| dvg

≤ C

∫
M

|uk|p
∗(α)−1 |uk − u| dvg

+ C

∫
M

|u|p
∗(α)−1 |uk − u| dvg.

By Hölder’s inequality with Hölder conjugates p∗(α)/(p∗(α) − 1) and
p∗(α), we obtain∣∣∣∣∣

∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣
≤ C

(∫
M

|uk|p
∗(α) dvg

)(p∗(α)−1)/p∗(α)

×
(∫

M

|uk − u|p
∗(α) dvg

)1/p∗(α)

+ C

(∫
M

|u|p
∗(α) dvg

)(p∗(α)−1)/p∗(α)

×
(∫

M

|uk − u|p
∗(α) dvg

)1/p∗(α)

.

Since (uk) is a bounded sequence in W 1,p(M) and 1 < p∗(α) < p∗,
it follows by the Rellich-Kondrachov theorem [17, 18], that (uk) is also
a bounded sequence in Lp∗(α)(M). We absorb this upper bound for
‖uk‖p

∗(α)−1

p∗(α) into the constant C . Then,∣∣∣∣∣
∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣
≤ C

(∫
M

|uk − u|p
∗(α) dvg

)1/p∗(α)

+ C

(∫
M

|u|p
∗(α) dvg

)(p∗(α)−1)/p∗(α)

×
(∫

M

|uk − u|p
∗(α) dvg

)1/p∗(α)

.

Since (uk) is a bounded sequence in Lp∗(α)(M) and uk → u pointwise
almost everywhere, we obtain by Fatou’s lemma,∫

M

|u|p
∗(α) dvg ≤ lim inf

k→∞

∫
M

|uk|p
∗(α) dvg

≤ Cp∗(α).

Absorbing this upper bound for ‖u‖p
∗(α)−1

p∗(α) into the constant C ,∣∣∣∣∣
∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣
≤ C

(∫
M

|uk − u|p
∗(α) dvg

)1/p∗(α)

+ C

(∫
M

|uk − u|p
∗(α) dvg

)1/p∗(α)

≤ C

(∫
M

|uk − u|p
∗(α) dvg

)1/p∗(α)

.
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Since (uk) is a bounded sequence in W 1,p(M) and uk → u pointwise
almost everywhere, then uk ⇀ u in W 1,p(M). Since 1 < p∗(α) < p∗,
it follows by the Rellich-Kondrachov theorem [17, 18] that uk → u in
Lp∗(α)(M). Then, in the limit as k → ∞, we have

lim
k→∞

∣∣∣∣∣
∫
M

ϕ
|uk|p

∗(α)

dg(x, x0)α
dvg −

∫
M

ϕ
|u|p

∗(α)

dg(x, x0)α
dvg

∣∣∣∣∣
≤ lim

k→∞
C

(∫
M

|uk − u|p
∗(α) dvg

)1/p∗(α)

= 0.

Since this holds for all ϕ ∈ C∞
c (M) satisfying supp(ϕ) ⊆ M\{x0}, it

must be that νi = 0 for all i ∈ I\{0}. Hence, we may write I = {0} and

ν =
|u|p

∗(α)

dg(x, x0)α
dvg + ν0δx0 . (38)

We now prove the conditions on µ. First, let ϕ ∈ C∞
c (M). By the triangle

inequality,∣∣∣∣∫
M

ϕ|∇uk|p dvg −
∫
M

ϕ|∇u|p dvg −
∫
M

ϕ|∇vk|p dvg

∣∣∣∣
≤
∫
M

|ϕ| ||∇uk|p − |∇u|p − |∇vk|p| dvg.

Since ϕ is smooth and has compact support, there exists a constant C > 0
such that∣∣∣∣∫

M

ϕ|∇uk|p dvg −
∫
M

ϕ|∇u|p dvg −
∫
M

ϕ|∇vk|p dvg

∣∣∣∣
≤ C

∫
M

||∇uk|p − |∇u|p − |∇vk|p| dvg

= C

∫
M

||∇uk|p − |∇u|p − |∇uk −∇u|p| dvg.

Since (uk) is a bounded sequence in W 1,p(M), it follows that (∇uk) is a
bounded sequence in Lp. Then, by the Brézis-Lieb lemma [19],

lim
k→∞

∫
M

||∇uk|p − |∇u|p − |∇uk −∇u|p| dvg = 0.

Hence, in the limit as k → ∞, we have

lim
k→∞

∣∣∣∣∫
M

ϕ|∇uk|p dvg −
∫
M

ϕ|∇u|p dvg −
∫
M

ϕ|∇vk|p dvg

∣∣∣∣ = 0.

Equivalently,

µ = |∇u|p dvg + µ̃

≥ |∇u|p dvg + K−p
n,p,α

∑
i∈I

ν̃
p/p∗(α)
i δxi

= |∇u|p dvg + K−p
n,p,αν

p/p∗(α)
0 δx0 .

�

Proof of the Main Result

We now prove the main result, Theorem 8. For convenience, we restate it
here:

Theorem. Let (Sn, g0) denote the n-sphere equipped with the round metric
and fix some x0 ∈ Sn. Let 1 < p < n, let 0 < α < p, let m ∈ N, let
p∗(α) = (n− α)p/(n− p), and let T : P̊m → R>0 be some map. Then,
for any ε > 0, there exists a constant Cε,T > 0 that depends only on ε and
T such that(∫

Sn

|u|p
∗(α)

dg(x, x0)α
dvg0

)p/p∗(α)

≤
(

Kp
n,p,α

Θ(m, p/p∗(α), n)
+ ε

)
×
∫
Sn

|∇u|p dvg0

+ Cε,T

∫
Sn

|u|p dvg0 , (39)

for any u ∈ W 1,p(Sn) that satisfies∫
Sn

f
|u|p

∗(α)

dg(x, x0)α
dvg0 ≤ T (f)

(∫
Sn

|u|p dvg0

)p∗(α)/p

(40)

for all f ∈ P̊m.

Proof of Theorem 8. For simplicity, define

β :=
Kp

n,p,α

Θ(m, p/p∗(α), n)
+ ε. (41)

Suppose, towards a contradiction, that Equation 15 does not hold. Then,
for any k ∈ N, there exists a sequence (uk) ⊆ W 1,p(Sn) satisfying∫

Sn
f

|uk|p
∗(α)

dg(x, x0)α
dvg0 ≤ T (f)

(∫
Sn

|uk|p dvg0

)p∗(α)/p

(42)

such that(∫
Sn

|uk|p
∗(α)

dg(x, x0)α
dvg0

)p/p∗(α)

> β

∫
Sn

|∇uk|p dvg0

+ k

∫
Sn

|uk|p dvg0 . (43)

Since the left-hand side is finite by the Riemannian Hardy-Sobolev inequal-
ity, we may assume by rescaling that(∫

Sn

|uk|p
∗(α)

dg(x, x0)α
dvg0

)p/p∗(α)

= 1. (44)

It follows immediately that∫
Sn

|∇uk|p dvg0 ≤ 1

β
, (45)∫

Sn
|uk|p dvg0 ≤ 1

k
. (46)

Since (uk) and (∇uk) are both bounded in Lp(Sn), it follows that the se-
quence (uk) is also bounded in W 1,p(Sn), a reflexive Banach space. Then,
by the Banach-Alaoglu theorem, the sequence (uk) has a weakly conver-
gent subsequence in W 1,p(Sn), which we denote as (ukj ). Suppose that
ukj ⇀ u weakly for some u ∈ W 1,p(Sn). Then ukj ⇀ u weakly in
Lp(Sn) and ∇ukj ⇀ ∇u weakly in Lp(Sn). However, we also have from
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Equation 46 that uk → 0 in Lp(Sn), and hence uk ⇀ 0 weakly in Lp(Sn).
By the uniqueness of the weak limit, it follows that u ≡ 0. Since it is clear
that ukj → 0 in Lp(Sn) also, by the Riesz-Fischer theorem, we may pass to
a further subsequence, which we still denote as (ukj ), that converges point-
wise almost everywhere to zero. Now, consider the following sequences of
measures:

(µj) :=
(
|∇ukj |

p dvg0
)
, (47)

(νj) :=

(
|ukj |

p∗(α)

dg(x, x0)α
dvg0

)
. (48)

By Equations 44 and 45, these sequences satisfy supj µj(K) < ∞ and
supj νj(K) < ∞ for each compact set K ⊆ Sn. By the weak compactness
for measures, there exist subsequences, which we still denote as (µj) and
(νj), such that

µj = |∇ukj |
p dvg0 ⇀ µ, (49)

νj =
|ukj |

p∗(α)

dg(x, x0)α
dvg0 ⇀ ν, (50)

whereµ and ν are some bounded, non-negative measures on Sn. Hence, by
the concentration-compactness principle (Theorem 10) there exists a non-
negative real number ν0 ∈ R such that

ν = ν0δx0 , (51)

µ ≥ K−p
n,p,αν

p/p∗(α)
0 δx0 . (52)

Furthermore,

ν(Sn) =

∫
Sn

dν

= lim
k→∞

∫
Sn

|uk|p
∗(α)

dg(x, x0)α
dvg0

= 1.

And,

µ(Sn) =

∫
Sn

dµ

= lim
k→∞

∫
Sn

|∇uk|p dvg0

≤ 1

β
.

Then, for any f ∈ P̊m,∣∣∣∣∫
Sn

f dν

∣∣∣∣ =
∣∣∣∣∣ lim
k→∞

∫
Sn

f
|uk|p

∗(α)

dg(x, x0)α
dvg0

∣∣∣∣∣
≤ lim

k→∞
T (f)

(∫
Sn

|uk|p dvg0

)p∗(α)/p

≤ lim
k→∞

T (f)

(
1

k

)p∗(α)/p

= 0.

Therefore, ν satisfies the conditions presented in Equation 7. Then, by the
definition of infimum,

Θ(m, p/p∗(α), n) ≤ ν
p/p∗(α)
0

≤ Kp
n,p,αµ(Sn)

≤
Kp

n,p,α

β
.

Hence,

β ≤
Kp

n,p,α

Θ(m, p/p∗(α), n)
. (53)

This contradicts our definition of β as given in Equation 41. It must then
be that Equation 15 holds. �

Conclusion

In this paper, we established an improved Hardy-Sobolev inequality on
Sn under moment constraints, extending the work of Hang and Wang [8]
from the standard Sobolev setting to the Hardy-Sobolev setting. To achieve
this, we first derived a concentration-compactness principle adapted to
the Hardy-Sobolev inequality on smooth, compact, Riemannian manifolds
without boundary. Our main result demonstrates that imposing moment
constraints on functions inW 1,p(Sn) leads to a tighter upper bound on the
Hardy-Sobolev constant, similar to the improvements obtained by Aubin
[7] and Hang and Wang [8] for the Sobolev case.

Following the approach of Hang and Wang [8] in Section 4 of their paper,
a natural direction for future work is to extend the above results to higher-
order Sobolev spaces W k,p(M). We briefly sketch the framework. Aubin
[4] previously extended the Euclidean higher-order Sobolev inequality to
smooth, compact, Riemannian manifolds without boundary. This suggests
that a similar extension should hold for the higher-order Hardy-Sobolev in-
equality. Such an extension would allow us to generalize the concentration-
compactness principle stated in Theorem 10 from W 1,p(M) to W k,p(M).
These results would then yield a higher-order version of Theorem 8, estab-
lishing a Hardy-Sobolev equivalent to Theorems 4.1 and 4.2 in Hang and
Wang’s paper [8].
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