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Description and Exploration of Mean-Gauss
Surfaces

Abstract

In this paper we explore solving the prescribed mean curvature equation for surfaces meeting a new relation
given byHS = λKS , whereHS andKS are themean and Gaussian curvatures, respectively. We prove several
existence theorems for various families of surfaces and state a conjecture for surfacesof revolution. To conclude,
we state aweak existence theorem, and a strong conjecture concerning possible solutions. The intention is that
by using differential geometry tools which would have likely been seen at the undergraduate level, the paper
and its results are more accessible. My hope is that these new theorems find applications in the classification
of surfaces in the future, or at the very least serves as an interesting curiosity.

Introduction

We will be exploring the existence of surfaces for which a proportionality
relationship between themean andGaussian curvatures exist. More specif-
ically those for which the following holds:

HS = λKS (1)

whereS is a smooth surface,HS themean curvature ofS,KS theGaussian
curvature, and λ a scalar. It would seem that solutions to this problem have
not yet been researched, and as such, I will assign the name of Mean-Gauss
surfaces to them.

To begin, we define the two curvatures and give explicit formulas for their
computations. Thenwe proceed to show that there exists at least oneMean-
Gauss surface (the sphere). Following which, we will work toward proving
several results concerning the existence of other such surfaces, yielding sev-
eral new theorems and conjectures.

The main body of exploration will be dealing with surfaces in R3 as these
will allow for visualizations. Furthermore, since this problemdoes not seem
to have been explored, beginning with the “simplest” case is likely a good
place to start.

Throughout the paper, we assume only a surface level knowledge of differ-
ential geometry in the hopes that this work provides insights and inspira-
tion to those not so far along their mathematical journey. Another thing
to note is that this paper is an excerpt of a lager work that was submitted
as my honours research project under the supervision of Dr. A. Stancu of
Concordia University.

Mean-Gauss Surfaces

The prescribed mean curvature equation is given by:

div

(
∇u√

1 + ||∇u||2

)
+ f(u) = 0

where∇ represents the gradient, and u(x) is a function defining a surface.
Furthermore, we have that:

div

(
∇u√

1 + ||∇u||2

)

is a scaled version of the mean curvature of an n dimen-
sional manifold embedded in Rn+1 defined as the graph S =
(x1, x2, ..., xn, u(x1, x2, ..., xn)), hence its namesake. The proof of
this fact is quite mechanical, but every part falls into place in a most
satisfying manner; as such, I encourage the reader to attempt it. The
inclusion of the divergence form here serves only to give an idea of what
problem led me to investigating relationship (1), and will not be used past
this section.

Possible solutions to the divergence equation is a topic with a large body of
research behind it. Generally these take a differential equation approach,
applying known techniques to findpossible solutions, or prove the existence
of solutions of specific forms.

For this paper, we will investigate whether there exist solutions when f(u)
is the Gaussian curvature of our surface or some scaled version of it. More
specifically, we remove the requirement that our surface writes as a graph,
and consider the more general relation HS = λKS instead.

Definition 1. Define a Mean-Gauss surface to be a smooth surface S such
that globally,

HS = λKS ,

whereKS is the Gaussian curvature,HS is the mean curvature, and
λ ∈ R. □

As for the question of why restrict λ to scalar values, we can consider the
following:

Let S be a surface defined by (x(u, v), y(u, v), z(u, v)); then for λ(u, v)
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we want

HS = λ(u, v)KS ,

but if we allow λ to be a function, then we can simply choose

λ =
HS

KS

which is a solution for all surfaces havingKS 6= 0 for anyu, v in its domain.
As such, this question does not require much investigating.

Even if KS = 0 at some set of points {pi} ∈ S, the relation still holds
everywhere else on the surface. Furthermore, we have local satisfaction
everywhere but on neighborhoods of the surface which are developable.

That being said, it would be interesting to ask for λ(u, v) satisfying (1) and
such that

T (λ(u, v)) 6= HS

KS

for any elementary or ”simple” transformation T . This is a question not
covered here, but which could prove to be an interesting avenue of future
research.

Defining the Curvatures

We begin by giving a relation between the Weingarten map and the funda-
mental forms, from which we will define the curvatures to be used in the
following sections. Going forward, we are dealing with surfaces embedded
in R3 unless stated otherwise.

Weingarten Map

For a surface S embedded in R3 we define the Weingarten map as

Wp,S = (I)−1(II)

where I is the matrix of the first fundamental form and II that of the second.

I =

(
E F
F G

)
,

II =

(
L M
M N

)
. □

Principal Curvatures

We define the principal curvatures of a surface S at a point p ∈ S to be the
minimum and maximum of the normal curvatures of all curves passing
through p. They can be found using the following:

For principal curvatures k1, k2 of S at p, and tangent vectors t1, t2 ∈ TpS
corresponding to the principal curvatures we have

Wp(ti) = kiti.

In other words, the principal curvatures are the eigenvalues of theWeingarten
map. Furthermore, we call the eigenvectors t1, t2 the principal directions of
S at p. □

Gaussian Curvature

We can compute the Gaussian curvatureK in several ways, one of which is

K = k1k2.

Another one that is useful for computation is

K = Det(Wp,S),

or equivalently

K =
Det(II)

Det(I)
.

Mean Curvature

Similar to the Gaussian curvature we can find themean curvature in several
ways:

H =
k1 + k2

2
,

another one being

H =
1

2
Trace(Wp,S),

or equivalently

H =
LG− 2MF +NE

2Det(I)
.

Higher Dimensional

If S is a manifold embedded in Rn+1, then the Weingarten map is an n
dimensional square matrix, and we can use the following definitions:

K =

n∏
i=1

ki,

H =
1

n

n∑
i=1

ki. □

Weingarten Surfaces

Mean-Gauss surfaces as defined by (1) are a particular case of Weingarten
Surfaces. A class of surfaces whose mean and Gaussian curvatures are con-
nected by a function f in the sense that1

f(H,K) = 0. (2)

For Mean-Gauss surfaces we have:

k1 + k2
2

= λ′k1k2,

k1 = λk1k2 − k2,

k1 − λk1k2 = −k2,

k1(1− λk2) = −k2,

k1 =
−k2

(1− λk2)
,

k1 =
k2

k2λ− 1
.

Page A2 McGill Science Undergraduate Research Journal - msurj.com - msurjonline.mcgill.ca

https://www.msurj.com
https://msurjonline.mcgill.ca


So we define f to be

f(H,K) = W (k1, k2) = k1 −
k2

k2λ− 1
. (3)

The set of solutions to (2) are called the curvature diagram, or W-diagram
of a surface.

Figure 1. W-diagram of [x − y
yλ−1 ] (2) for various λ.

We have Theorem 1 giving relations concerning said diagrams:

Theorem 1 (Interpretation of Principal Curvatures1). If the curvature dia-
gram of a surface S

i) degenerates to exactly one point, then S has two constant principal cur-
vatures and is part of a plane, sphere, or circular cylinder.

ii) is contained in one of the coordinate axes through the origin, then S is
developable.

iii) is contained in the main diagonal k1 = k2, then the surface S is part of
a plane or sphere, as every point is umbilic.

We also have the following bi-directional statements:

i) The curvature diagram is contained in a straight line parallel to the di-
agonal k1 = −k2 if and only if the mean curvature is constant.

ii) The curvature diagram is contained in a standard hyperbola k1 = c
k2

for c ∈ R if and only if the Gaussian curvature is constant. □

Spheres and Hyperspheres

One family of surfaces for which the Mean-Gauss relation is satisfied are
spheres and hyperspheres.

Consider the sphere S = {(x, y, z)|x2 + y2 + z2 = ρ2}, which has the
parametric equation

S(ρ, θ, ϕ) = (ρ cos θ sinϕ, ρ sin θ sinϕ, ρ cosϕ)

where θ ∈ [0, 2π] is the azimuthal angle (longitude), ϕ ∈ [0, π] is the polar
angle (co-latitude), and ρ the radius of S.

Then S has the following Gaussian and mean curvatures.

K =
1

ρ2
,

H =
1

ρ
.

An important remark is that both quantities are constant based on the ra-
dius of our sphere.

Now, by the above we see that the unit sphere satisfies the condition with
λ = 1, and for λ 6= 1 we have

HS = λKS ,

1

ρ
= λ

1

ρ2
,

λ = ρ.

For hyperspheres of radius ρ, we take a different approach by using the
Gauss and Weingarten map.

Recall that the Gauss map G : S → Sn, takes our surface to the unit ball
for Rn. But here our surface is already a sphere, so we simply scale it.

Note that we are taking the geometer’s approach; using n to denote the di-
mension of the sphere.

So if S = {x ∈ Rn+1|
∑n+1

i=1 x2
i = ρ2} is a sphere of radius ρ embedded

inRn+1, then for x ∈ S, the unit normals and by extension the Gauss map
will be

G(S) = −(
S

ρ
)

which maps every x ∈ S to −x
ρ
, giving us that for every x ∈ S we have

n+1∑
i=1

(−xi

ρ
)2 =

1

ρ2

n+1∑
i=1

x2
i

=
1

ρ2
ρ2

= 1,

which describes the unit sphere Sn. Remark that we chose the negative
normal direction; the reasoning becomes apparent in the next step.

Now,

W = −DG,

the negative of the Jacobian of the Gauss map, which is given by

W = (
1

ρ
)I

where I is the identity matrix for Rn, since D : TpSn → TpSn.

The curvatures are then given by the trace ofW over n and its determinant
for the other.

HS =
1

n
Trace(W) =

1

ρ

KS = Det(W) =
1

ρn

We see that the Mean-Gauss relation is satisfied for λ = ρn−1.

Thus, we have proven Theorem 2 as follows:

Theorem 2 (n-Sphere). For any n-sphere S of radius ρ, the Mean-Gauss
relation

HS = λKS

is satisfied by λ = ρn−1. ■
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(a) Gaussian Curvature (b)Mean Curvature

Figure 2. Sphere coloured according to curvature.

If we compare this result with the standard case of n = 2, we can see that
it is consistent.

Trivial Cases

It should be mentioned that there are trivial cases of this problem. First,
if the surface S is a plane which has 0 Gaussian and mean curvature, then
H = λK is trivially satisfied.

Another case which can be considered trivial or rather one we can imme-
diately rule out is that of non-planar developable surfaces. In this case, one
of the principal curvatures will be 0, giving

H = λ(0)

which lacks a solution for λ in the non-extended reals.

The last trivial case to be considered is that of minimal surfaces withHS =
0 satisfied by λ = 0. Therefore, we restrict λ ∈ R\{0}.

Graphs of Functions

Let S ⊂ R3 be a graph; that is, S = {(x, y, z) ∈ R3|f(x, y) = z} for
some function f which is continuous and well defined.

Then, the coefficients of the first fundamental form of S are given by

E = ||(1, 0, fx)||2

= 1 + f2
x ,

F = (1, 0, fx)(0, 1, fy)

= fxfy,

G = ||(0, 1, fy)||2

= 1 + f2
y .

And we have a unit normal to S,

n⃗ =
(1, 0, fx)× (0, 1, fy)

||(1, 0, fx)× (0, 1, fy)||

=
(−fx,−fy, 1)√
1 + f2

x + f2
y

=
(−fx,−fy, 1)

d
,

where d =
√

1 + f2
x + f2

y . Now, the coefficients of the second fundamen-
tal form are

L = (0, 0, fxx) · n⃗

=
fxx
d

,

M = (0, 0, fxy) · n⃗

=
fxy
d

,

N = (0, 0, fyy) · n⃗

=
fyy
d

.

Using the definition of the Weingarten map

Wp,S = (I)−1(II),

we have

Wp,S =
1

EG− F 2

(
GL− FM GM − FN
ME − FL NE − FM

)
,

yielding the curvatures

HS =
1

2

GL− 2FM +NE

EG− F 2

(a) Gaussian Curvature (b)Mean Curvature

Figure 3. Graph of f(x, y) = sin(x) cos(y) coloured according to curvature.
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=
1

2

(1+f2
y )(fxx)

d
− 2

fxfyfxy

d
+

(1+f2
x)(fyy)

d

(1 + f2
x)(1 + f2

y )− f2
xf2

y

=
1

2

1

d

(1 + f2
y )(fxx)− 2fxfyfxy + (1 + f2

x)(fyy)

1 + f2
x + f2

y

=
1

2d3
[(1 + f2

y )(fxx)− 2fxfyfxy + (1 + f2
x)(fyy)],

and

KS =
LN −M2

EG− F 2

=

fxxfyy

d2
− f2

xy

d2

d2

=
fxxfyy − f2

xy

d4
.

Now we want to meet the relation HS = λKS for λ a non-zero constant.
As such, we can leave out the 1

2
scalar from the mean curvature, giving us

1

d3
[(1 + f2

y )(fxx)− 2fxfyfxy + (1 + f2
x)(fyy)] = λ

fxxfyy − f2
xy

d4
,

d[(1 + f2
y )(fxx)− 2fxfyfxy + (1 + f2

x)(fyy)] = λ[fxxfyy − f2
xy]

Immediately, we note a trivial solution to this equation which we covered
in the Trivial Cases section: flat surfaces where the second order partials
are 0, giving 0 = 0.

So assume fxxfyy − f2
xy 6= 0 which rules out said trivial case, giving

d
[(1 + f2

y )(fxx) + (1 + f2
x)(fyy)]

[fxxfyy − f2
xy]

= λ.

Then for λ to be a constant, either both d and [(1+f2
y )(fxx)+(1+f2

x)(fyy)]

[fxxfyy−f2
xy ]

are constants, or they are reciprocals of each other as functions.

Case I: Let d be a constant; that is,
√

1 + f2
x + f2

y = c for some c ∈ R.
Then clearly, f2

x and f2
y must be constants or f2

x + f2
y = ĉ, a constant.

If both are constant, then f is a plane which is the trivial case and not being
considered here.

If not both constant, then f2
x + f2

y = ĉ, for some ĉ ∈ R. Then f can be of
the forms

f− = c1 + yc2 − x
√

ĉ− c22

and

f+ = c1 + yc2 + x
√

ĉ− c22

for constant c1 and c2. But then fxx = fyy = fxy = 0 ⇒ we have a
contradiction to fxxfyy − f2

xy 6= 0. Note that this is equivalent to the
second fundamental form being a 0 matrix.

Therefore, d is not a constant, andwe are in the case that they are reciprocals
of each other.

Case II: We have

[(1 + f2
y )(fxx) + (1 + f2

x)(fyy)]

[fxxfyy − f2
xy]

=
λ

d
,

GdL+ EdN

dLdN − d2M2
=

λ

d
,

d

d2
GL+ EN

LN −M2
=

λ

d
,

1

d

GL+ EN

LN −M2
=

λ

d
,

GL+ EN

LN −M2
= λ.

To continue, we will need a few definitions and propositions:

Definition 2 (Umbilical Points2 (p178)). We say that a point p is umbilical if

k1(p) = k2(p)

for principal curvatures k1, k2. □

Proposition 1 (Spheres are totally umbilic). Every point p on a sphere S is
umbilic.

The proof of which is immediate from a calculation which yields k1,2 = 1
ρ

where ρ is the radius of the sphere. Furthermore, spheres are the only totally
umbilic surfaces with non-zero curvatures. □

Proposition 2 (Diagonal Fundamental Forms2 (p201)). Let p be a point of a
surface S, and suppose that p is not an umbilic. Then, there is a surface patch
σ(u, v) of S containing p whose first and second fundamental forms are

Edu2 +Gdv2 and Ldu2 +Ndv2,

respectively, for some smooth functions E,G,L,N . □

Now assume that S is not totally umbilic; then, there exists a point p of S
for which locally the equation in case II becomes

GL+ EN

LN
=

G

N
+

E

L
= λ. (4)

Furthermore, by the same proposition we have that

F = 0,

fxfy = 0

which implies either fx = 0 or fy = 0 in a neighborhood of p. Without
loss of generality, let fy = 0, then N =

fyy

d
= 0, and from (4),

G

N
+

E

L
=

1

0
+

E

L

is undefined.

Therefore, forS satisfying themean Gauss relation there are no such points
p, and we have that S is totally umbilic. Since the sphere is the only surface
with non-zero curvatures and which is totally umbilic, we have that S must
be part of a sphere.

Thus we have proven the following Theorem 3:

Theorem 3 (Mean-Gauss Graphs). Let S = {(x, y, z) ∈ R3|z =
f(x, y)}, for a function f which is smooth and well defined, be the graph
of a function such that HS = λKS for λ ∈ R\{0} and such that
fxxfyy − f2

xy 6= 0. Then, S is a part of or a whole sphere.

We note that for S to be the graph of a function and a whole sphere, we will
require more than one chart. ■
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Surfaces of Revolution

Let C = (x(s), y(s)) be a regular smooth curve parameterized by arc
length, which generates a surface of revolution S in the following way:

S = {(x(s), y(s) cos(t), y(s) sin(t))}.

We call C the profile curve of S. For brevity going forward, we will omit s
when writing such that S = {(x, y cos(t), y sin(t)}.

We have first order partial derivatives

Ss = (x′, y′ cos(t), y′ sin(t)), St = (0,−y sin(t)), y cos(t)),

and second

Sss = (x′′, y′′ cos(t), y′′ sin(t)),
Sst = (0,−y′ sin(t), y′ cos(t)).

Stt = (0,−y cos(t)),−y sin(t)),

Then the first fundamental form of S has the components

E = ||Ss||2

= x′2 + y′2 cos(t)2 + y′2 sin(t)2

= x′2 + y′2(cos2(t) + sin2(t))

= x′2 + y′2

= ||C||2

= 1,

F = −y′y sin(t) cos(t) + yy′ sin(t) cos(t)
= 0,

G = ||St||2

= y2(sin2(t) + cos2(t))

= y2.

In matrix form,

I =

(
1 0
0 y2

)
.

In order to compute the second fundamental form, we start with the unit
normal:

n⃗ =
Ss × St

||Ss × ||St

=

[
x′ y′ cos(t) y′ sin(t)
0 −y sin(t) y cos(t)

]
d

=
[(y′y cos2(t) + y′y sin2(t)),−(x′y cos(t)), (−x′y sin(t))]

d

=
[y′y,−x′y cos(t),−x′y sin(t)]

[y′2y2 + x′2y2 cos2(t) + x′2y2 sin2(t)]
1
2

=
[y′y,−x′y cos(t),−x′y sin(t)]
y[y′2 + x′2(cos2(t) + sin2(t))]

1
2

=
[y′y,−x′y cos(t),−x′y sin(t)]

y

= (y′,−x′ cos(t),−x′ sin(t)).

Now the components of the second fundamental form are:

L = Sss · n⃗
= (x′′, y′′ cos(t), y′′ sin(t))(y′,−x′ cos(t),−x′ sin(t))

= x′′y′ − y′′x′ cos2(t)− y′′x′ sin2(t)

= x′′y′ − y′′x′,

M = sst · n⃗
= (0,−y′ sin(t), y′ cos(t))(y′,−x′ cos(t),−x′ sin(t))
= x′y′ sin(t) cos(t)− x′y′ sin(t) cos(t)
= 0,

N = Stt · n⃗
= (0,−y cos(t)),−y sin(t))(y′,−x′ cos(t),−x′ sin(t))

= yx′ cos2(t) + yx′ sin2(t)

= yx′,

giving the matrix form

II =

(
x′′y′ − y′′x′ 0

0 yx′

)
,

with mean and Gaussian curvature

HS =
1

2

GL− 2FM +NE

EG− F 2

=
1

2

y2(x′′y′ − y′′x′) + yx′

y2

=
1

2

y(x′′y′ − y′′x′) + x′

y
,

KS =
LN −M2

EG− F 2

=
(x′′y′ − y′′x′)yx′

y2

=
(x′′y′ − y′′x′)x′

y
.

Now putting it in the form of the relation (1), we get:

HS = λ′KS ,

y(x′′y′ − y′′x′) + x′

y
= λ

(x′′y′ − y′′x′)x′

y
,

y(x′′y′ − y′′x′) + x′ = λ(x′′y′ − y′′x′)x′,

y(x′′y′ − y′′x′) + x′ − λ(x′′y′ − y′′x′)x′ = 0,

(x′′y′ − y′′x′)(y − λx′) + x′ = 0.

Case I: (x′′y′ − y′′x′) = 0

Then x′ = 0 ⇒ x = c, for some constant c, and either S degenerates to a
single point or is a yz−plane passing through x = c.

Case II: (y − λx′) = 0

Then x′ = 0 ⇒ y = 0 and S is given by S = {(c, 0, 0)} a single point.

Case III: (x′′y′ − y′′x′)(y − λx′) = −x′

For case III, we take a different approach. Let (x′′y′ − y′′x′), (y − λx′),
and x′ be non-zero and recall we parameterizedC by arc length, so we have
x′2 + y′2 = 1 giving several relations. For the moment we are interested
in

x′2 + y′2 = 1 ⇒ 2x′x′′ + 2y′y′′ = 0,

x′′ =
−y′y′′

x′ .

Then from above, we recalculate the mean and Gaussian curvatures
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HS =
1

2

y(x′′y′ − y′′x′) + x′

y

=
1

2

y([−y′y′′

x′ ]y′ − y′′x′) + x′

y

=
1

2

(
−y′2y′′ − y′′x′2

x′ +
x′

y

)
=

1

2

(
−y′′

x′ (y′2 + x′2)− x′

y

)
=

1

2

(
x′

y
− y′′

x′

)
,

KS =
(x′′y′ − y′′x′)x′

y

=
x′([−y′y′′

x′ ]y′ − y′′x′)

y

=
−y′2y′′ − y′′x′2

y

=
−y′′(y′2 + x′2)

y

=
−y′′

y
,

giving the new relation

H = λ̂K,

1

2

(
x′

y
− y′′

x′

)
= λ̂

−y′′

y
,(

x′

y
− y′′

x′

)
= λ

y′′

y
, λ = −2λ̂.

Now we once again refer to the parameterization by arc length which gives
that for x, y ∈ [0, 1] we have the expression x′ = ±

√
1− y′2. We keep in

mind the symmetry of surfaces of revolution and consider only the positive
case: (√

1− y′2

y
− y′′√

1− y′2

)
= λ

y′′

y
,(

1− y′2 − yy′′

y
√

1− y′2

)(
y

y′′

)
= λ,(

1− y′2 − yy′′

y′′
√

1− y′2

)
= λ,

(1− y′2 − yy′′) = λ(y′′√1− y′2).

From here, recall that our original profile curve was given by (x(s), y(s)),
a function of s. Make the substitution z = y′ = dy

ds
. This gives

y′′ =
dz

ds
=

dz

dy
· dy
ds

= z
dz

dy
.

Then,

(1− z2 − yz
dz

dy
) = λ(z

dz

dy

√
1− z2),

1− z2 = λz
dz

dy

√
1− z2 + yz

dz

dy
),

1− z2 =
dz

dy

(
λz
√

1− z2 + yz

)
,

dy

dz
=

λz√
1− z2

+
yz

(1− z2)
. (∗)

Equation (∗) is a non-homogeneous linear differential equation in y, so we
begin by solving the homogeneous case:

dy

dz
=

yz

(1− z2)
,

1

y
dy =

z

(1− z2)
dz,

ln(y) = −1

2
ln(1− z2) + C,

ln(y) = ln( 1√
1− z2

) + C,

eln(y) = e
ln( 1√

1−z2
)+C

,

eln(y) = e
ln( 1√

1−z2
)

eC ,

y =
D(z)√
1− z2

. (∗∗)

Then differentiating with respect to z gives us:

y′ =

D′[
√
1− z2]−D

[ −z√
1−z2

]
(1− z2)

=
D′

√
1− z2

+
Dz

(1− z2)
3
2

=
D′

√
1− z2

+
yz

(1− z2)
.

Returning to (∗), the non-homogeneous case, by plugging in our found ho-
mogeneous solution, we obtain

λz√
1− z2

+
yz

(1− z2)
=

D′
√
1− z2

+
yz

(1− z2)
,

λz = D′.

Therefore, D′ is a linear function giving

D = λ
z2

2
+R

where R is a constant. Then from (∗∗) and using λ = −2λ̂,

y =
−λ̂z2 +R√

1− z2

=
R− λ̂z2√
1− z2

.

Case IIIa: If λ̂ 6= R, a computer algebra system3 (the process of which can
be seen in reference) gives the results:

c1 −
s√
2
=

∫ y(s)

1

1√
−
√

ξ2(−4ab+4b2+ξ2)+2ab−ξ2

b2

dξ,

c1 +
s√
2
=

∫ y(s)

1

1√
−
√

ζ2(−4ab+4b2+ζ2)+2ab−ζ2

b2

dζ,
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c1 −
s√
2
=

∫ y(s)

1

1√√
∂2(−4ab+4b2+ϑ2)+2ab−ϑ2

b2

dϑ,

c1 +
s√
2
=

∫ y(s)

1

1√√
φ2(−4ab+4b2+φ2)+2ab−φ2

b2

dφ.

At first glance, the linearity of the left hand side leads to a contradiction of
the assumption that we are in a non-trivial case; however, further research
into the implications of the solution are required.

For the this paper we will focus on the more immediate case:

Case IIIb: Now if λ̂ = R, we get:

y = λ̂
1− z2√
1− z2

= λ̂
√

1− z2,

y2 = λ̂2(1− z2)

= λ̂2 − λ̂2z2,

y2 − λ̂2 = −λ̂2z2,

λ̂2 − y2

λ̂2
= z2,√

λ̂2 − y2

λ̂
= z,

1

λ̂
=

z√
λ̂2 − y2

.

Then, by definition we have z = y′, giving:∫
1

λ̂
ds =

∫
y′

λ̂
√

1− ( y

λ̂
)2
ds,

s

λ̂
+ ϕ = arcsin( y

λ̂
).

Note that we used the substitution u = y

λ̂
to integrate. Finally, we get an

expression for the component function y(s):

y(s) = λ̂ sin( s
λ̂
+ ϕ).

We remark here that the constant ϕ represents a phase shift on the input
angle of our function. Now from the arc-length parameterization:

x′2 + y′2 = 1,

x′2 + (λ̂ cos( s
λ̂
+ ϕ)

1

λ̂
)2 = 1,

x′2 = 1− (cos( s
λ̂
+ ϕ))2,

x′ = ± sin( s
λ̂
+ ϕ),

x(s) = ∓λ̂ cos( s
λ̂
+ ϕ) + γ.

So x(s) takes the form of a general sinusoidal function; we have reflections
along the x-axis given by ∓, amplitude control via λ̂, phase shifts from ϕ,
and finally translations along x handled by γ.

So the profile curve C of S meeting the criteria is given by

C = (∓λ̂ cos( s
λ̂
+ ϕ) + γ, λ̂ sin( s

λ̂
+ ϕ)),

which is a circle centered on the x axis at x = γ of radius λ̂. Then the
surface of revolution S is

S = {∓λ̂ cos( s
λ̂
+ ϕ), λ̂ sin( s

λ̂
+ ϕ) cos(t), λ̂ sin( s

λ̂
+ ϕ) sin(t))},

which is a sphere of radius λ̂, centered at (γ, 0, 0).

A fascinating result is that depending on our definition of the domain of s,
namely if |Dom(s)| < |2λ̂π| where | · | represents the standard Lebesgue
measure, we obtain part of a sphere which still meets the criteria. So we can
extend our hypothesis to include:

If H = λK for a surface S as above and non-zero λ, then S is part of a
sphere.

Which gives a solid basis for the following conjecture:

Conjecture 1 (Mean-Gauss Surfaces of Revolution). Given C =
(x(s), y(s)), a complete smooth curve parameterized by arc length, which
generates a surface of revolution S in the following way:

S = {(x(s), y(s) cos(t), y(s) sin(t))}

for which we haveHS = λKS for λ ∈ R\{0} andKS 6= 0 globally.

Then S is a sphere, or part of a sphere with profile curve:

x(s) = ∓λ̂ cos( s
λ̂
+ ϕ) + γ,

y(s) = λ̂ sin( s
λ̂
+ ϕ). □

An important remark is that if we were instead to chose to rotate about the
y axis, we would obtain a similar result but having instead:

y(s) = ∓λ̂ cos( s
λ̂
+ ϕ) + γ,

x(s) = λ̂ sin( s
λ̂
+ ϕ).

And since the phase shift can be chosen as required to fit our initial condi-
tions we can put the equations in standard form for R2 namely:

y(s) = ∓λ̂ sin( s
λ̂
+ ϕ′) + γ,

x(s) = λ̂ cos( s
λ̂
+ ϕ′).

Surfaces of Constant Curvature

For surfaces of constant curvature, there are three possible cases. One and
two are relatively uninteresting in our context, but they will be briefly cov-
ered.

i) Constant mean curvature surfaces
ii) Constant Gaussian curvature surfaces
iii) Both mean and Gaussian curvatures are constant

Case I: Constant Mean Curvature

If H = 0, then we have the trivial case of a plane or a minimal surface
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(a) Gaussian Curvature (b)Mean Curvature

Figure 4. Enneper’s Minimal Surface coloured according to curvature.

which is satisfied by λ = 0. As previously mentioned, it is excluded from
the general case of our relation.

And if H = γ for some γ ∈ R, butK = f(x) is non constant for x ∈ R3,
then there is clearly no λ constant which will satisfy

γ = λf(x)

for every x on the surface. ■

Case II: Constant Gaussian Curvature

In this case, if K = 0 then our relation is not satisfied for any λ ∈ R, as
discussed in Trivial Cases.

And as in Case I, if H = f(x) and K = γ then

f(x) = λγ

has no solutions which hold for every x on the surface. ■

Case III: Constant Mean and Gaussian Curvature

To handle case III, we need a theorem and its corollary from Montiel and
Ros4.

Theorem 4 (Classification of Surfaces with Parallel Second Fundamental
Form). An orientable surface whose principal curvatures are constant, or
equivalently, whose Gauss and mean curvatures are constant, is necessarily
an open subset of a plane, a sphere, or of a right circular cylinder. □

Corollary 1. The only connected surfaces closed as subsets ofR3 having con-
stant principal curvatures are planes, sphere and right circular cylinders. □

From the above corollary, we need only consider the 3 surfaces. If we have a
right circular cylinder we are in the case thatK = 0 and the relation is not
satisfied. The plane is once again the trivial case, leaving us with the sphere
which we have shown satisfies our relation.

Thus we have proven the following Theorem 5:

Theorem 5 (Mean-Gauss Surface of Constant Curvature). The only ori-
entable surfaces of constant curvature (mean or Gaussian) which satisfies
H = λK non-trivially are spheres. ■

Mean-Gauss Theorems

Collected Relation Theorems

For ease of reference, find the collected theorems from the previous sections
below.

Spheres

For any n-sphere S of radius ρ, the Mean-Gauss relation

HS = λKS

is satisfied by λ = ρn−1. ■

Graphs

Let S = {(x, y, z) ∈ R3|z = f(x, y)}, for a function f which is smooth
and well defined, be the graph of a function such that HS = λKS for λ ∈
R\{0} and such that fxxfyy − f2

xy 6= 0. Then S is a part of or a whole

(a) Gaussian Curvature (b)Mean Curvature

Figure 5. Pseudo-Sphere hasKS = −1 globally.
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sphere. ■

Surfaces of Revolution (Conjecture)

Given C = (x(s), y(s)), a complete smooth curve parameterized by arc
length, which generates a surface of revolution S in the following way:

S = {(x(s), y(s) cos(t), y(s) sin(t))}

for which we haveHS = λKS for λ ∈ R\{0} andKS 6= 0 globally.

Then

x(s) = ∓λ̂ cos( s
λ̂
+ ϕ) + γ,

y(s) = λ̂ sin( s
λ̂
+ ϕ),

and S is a sphere, or part of a sphere. □

Surfaces of Constant Curvature

The only orientable surfaces of constant curvature (mean or Gaussian) which
satisfiesH = λK non-trivially are spheres. ■

We also state a version of the Implicit function theorem from Lang5 which
refers to it as “The Implicit Mapping Theorem.” Note that some of the state-
ments of the theorem in our version have been made more specific as Serge
Lang is dealing with general Banach spaces.
Theorem 6 (Implicit Function Theorem). Let f : Rm+n → Rm where
(x, y) 7→ f(x, y) be a continuously differentiable function. Then for a fixed
point (a, b) ∈ Rm+n with f(a, b) = 0, if the Jacobian matrix

Jf,y(a, b) =


∂f1
∂y1

(a, b) . . . ∂f1
∂ym

(a, b)
...

. . .
...

∂fm
∂y1

(a, b) . . . ∂fm
∂yn

(a, b)


is invertible, then there exists an open set U ⊂ Rn containing (a) such that
there exists a unique continuously differentiable function g : U → Rm for
which g(a) = b and f(x, g(x)) = 0 for all x ∈ U . □

In essence, the implicit function theorem tells us that for any surface S,
there exist points pi for which in a neighborhood of the image of pi we can
describe the surfaces as the graph of a function.
Theorem7 (WeakMean-GaussTheorem). Theonly embedded smooth non-
developable surfaces S ⊂ R3 containing at least one point (a, b) satisfying
the conditionJf,y(a, b) is invertible, andwhich globally satisfiesHS = λKS

where λ ∈ R are part of or a complete sphere.

Proof. Theproof by contradiction is immediate from the relation for graphs
of functions (Theorem 3) and the implicit function theorem.

Let S be a surface as described and not part of a sphere, then locally there
would be a patch forwhich the surfacewrites as the graph of functionwhich
is not locally spherical, hence it fails the relation. ■

Conjecture 2 (Strong Mean-Gauss Conjecture). The only smooth non-
developable surfaces S ⊂ R3 satisfying the Mean-Gauss relation HS =
λKS for λ ∈ R are part of or a whole sphere. □

While the proven theorems in this paper point towards the strong conjec-
ture holding, more research is needed in order to prove it concretely, and

even further work needs to be done in order to prove an n dimensional
version of the theorems.

Another interesting question is that if we relax the global requirement for
smoothness, what types of surfaces can we build which satisfy the relation?

One simple example is if we have two spheres of equal radii, we can take
two parts and glue them together. Then the relation is satisfied everywhere
but along the glued boundary where the classical notion of curvature fails
to exist.
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