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Abstract

Heat within a city is not evenly distributed, giving rise to regions of relatively warm and cold temperatures.
Regions of very high heat are referred to as micro-urban heat islands (MUHIs) and can be severe enough to
harm human health. Despite MUHIs being an important factor in urban health, they are extremely under-
researched. In this study we mapped the locations of MUHIs on the island of Montréal and compared them
with the locations of vegetation on three clear, sunny days: August 10th, 2021; July 6th, 2020; and June 20th, 
2020 using Landsat 8 thermal images with 30 m resolution. We compared two criteria for MUHIs and quanti-
fied their composition based on unsupervised classification done on ENVI 5.6.1, and Normalized Difference
Vegetation Index (NDVI) calculations. Our results show that MUHIs are mainly associated with the presence
of asphalt and concrete, and the absence of dense vegetation. The presence of these materials is not, how-
ever, a strong predictor of the formation of MUHIs in themselves. Though variability in unsupervised classi-
fications between images introduces uncertainty in MUHI composition, these results suggest that increasing
dense vegetation coverage in Montréal could prevent MUHI development during the summer.

Introduction

The micro-urban heat island (MUHI), or surface heat island, is a microcli-
matic phenomenon where isolated urban locations have high surface tem-
peratures compared to surrounding areas1. There is no standard definition 
for what constitutes a MUHI; Aniello et al.1 define a MUHI as any area 
whose surface temperature is higher than the maximum tree canopy sur-
face temperature. Although MUHIs pose a serious risk to human health2-4, 
it is an extremely understudied phenomenon. This contrasts with general 
urban heat island (UHI) effect which is typically studied at a larger scale, 
such as an entire city having warmer surface and air temperatures than 
surrounding rural areas. 

MUHIs are one of four main types of urban heat islands. While MUHIs 
are detected on micro-scales using remotely sensed land surface tempera-
ture (LST) data, an UHI may also be defined using air temperature and 
on local and meso-scales. Surface temperatures are often higher, and air 
temperatures are more sensitive to vegetation density. The two measures 
are, however, often closely linked5. Canopy and boundary layer heat is-
lands are both defined based on atmospheric temperature differences be-
tween urban and rural areas; sub-surface heat islands are defined based 
on temperature differences between urban and rural subterranean ground. 
Despite the differences between the four types of UHIs, all arise from dif-
ferences in the energy budgets between areas6.

Surface UHIs are associated with materials with a combination of [1] low 
albedo, which means less solar radiation is reflected and more is absorbed; 
[2] high heat capacity, which allows more energy to be stored; and [3] low 
emissivity, which is the the effectiveness of a material in emitting energy, 
causing the surface temperature to be higher for a given amount of ab-
sorbed radiation7. Urban areas also have anthropogenic heat input from 
cars, electricity generation, and industrial processes which may contribute 
to the UHI effect8-10. The impact of anthropogenic heat on MUHIs has not 
been investigated. Additionally, heat distribution is profoundly affected by 
latent heat flux, which is the heat that is removed or added to a system via 
phase change processes like evaporation11,12. Vegetated areas lose signif-
icant amounts of latent heat via evapotranspiration. In the case of large 
green areas such as parks, this cooling effect extends outside of the area 
of the park13. For example, Jáuregui (1990)14 found that the cooling ef-
fect of the Chapultepec Park, Mexico extends to a radius of 2 km around 
the park, which approximately corresponds to the width of the park. At 
smaller scales, vegetation can have a significant cooling effect through 
shading15,16. Besides the contributions of different materials to the urban 
landscape, the configuration of these materials, or surface form, is also im-
portant. To become surface heat islands, materials with the characteristics 
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listed must also be dry and be oriented to receive direct solar radiation17. 
The 3D structure of cities contributes to UHI formation by increasing the 
active surface area for energy exchange compared to flatter rural areas. 
Canyons formed by buildings and roads trap radiation through multiple 
reflection of incoming solar radiation between canyon walls and reduc-
tion of radiation loss from surfaces by shielding them from the cold sky. 
Canyons also shield urban surfaces from wind, which decreases sensible 
heat loss6. Though remote sensing can provide continuous LST data for an 
entire city, its images only provide a 2D overhead view. Therefore, it misses 
the contribution of vertical surfaces and structures which are critical to 
UHI phenomena18.

Previous work on MUHIs is mostly confined to the mapping of this phe-
nomenon in different cities in the USA, Greece, and India1,19,20, and one 
study investigating their effect on heat-related mortality in Montréal2. 
MUHIs have not yet been mapped in Montréal nor have their mechanisms
been studied despite this being an important aspect of the urban envi-
ronment and health. Based on previous work, we expect that MUHIs in 
Montréal are located on urban surfaces such as asphalt and concrete, and 
that vegetation has a negative effect on MUHI formation.

The purpose of defining MUHIs is to understand the spatial distribution of 
urban heat. Materials within a city are distributed heterogeneously, mean-
ing that some areas, such as parks and gardens, may radiate less heat than 
other areas such as parking lots or concrete buildings. Though MUHIs are 
defined based on surface temperature and not atmospheric temperature, 
which is what is experienced by pedestrians, hot urban surfaces still con-
tribute to atmospheric heat islands and negatively impact human health. 
Understanding the spatial distribution will allow us to pinpoint urban 
locations that pose a larger risk to human health on very hot days and 
to identify which features exacerbate urban heating. Moreover, learning 
how MUHIs form can help predict future MUHI development and advise 
mitigation efforts.

Methods

Data Acquisition

We used Landsat 8 Collection 2 Level-2 images. Level-2 products, provid-
ed by the United States Geological Survey (USGS), are corrected for easy 
use and are freely available to the public. Landsat 8 images are collected at 
30 meter resolution and at near-nadir angles (±7.5º)21. The images provid-
ed are already corrected by USGS for sensor degradation and changes, so-
lar elevation, bandwidth, Earth-sun distance and effects of the atmosphere 
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to obtain surface reflectances22,23. These were then converted by USGS to 
land surface brightness temperatures using the Planck function24. Bright-
ness temperature represents the temperature that a blackbody would have 
if it were emitting the same amount of radiation. Therefore, to calculate 
actual temperature, information on the emissivity of the ground must be 
known. The Level-2 products combine the Global Emissivity Database 
(GED), a measure global emissivity calculated through the Temperature–
Emissivity Separation (TES) algorithm, and presented at 100-meter25 
resolution with brighness temperature26. The measurements for the GED 
are collected by a sensor on the Terra satellite, the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER), and values are ac-
curate to ±0.015 27, but can vary more in a city due to urban development 
and heterogeneity. The result is a land surface temperature product that is 
ready to use. 

From Landsat’s collection of measured frequency bands, we used bands 
1 to 5 and 10. Band 1 corresponds to ultra blue (443 nm), bands 2 to 4 to 
blue, green, and red (482 nm, 561.5 nm and 654.5 nm) respectively, band 
5 corresponds to near infrared (NIR) (865 nm), and band 10 corresponds 
to thermal infrared (TIRS) (10895 nm)28. Combining bands 2 to 4 results 
in the visible true color image, and bands 4 and 5 are used to determine 
the Normalized Difference Vegetation Index (NDVI). We used bands 1-5 
to classify surface cover types, and band 10 is used to obtain land surface 
temperatures.

In order to select comparable images, we used the Sentinel-Hub EO-Brows-
er to visualise thermal images from Landsat 8. Three images correspond-
ing to warm summer days with a clear sky within the last two years were 
qualitatively selected to have a comparable set of images in terms of me-
teorological conditions, urban development and overall surface tempera-
ture. These three images are from August 10th 2021, July 6th 2020, and June 
20th 2020. All images are taken at a similar time of the day: from 10:30 to 
11:30 AM EST. We downloaded the images from the USGS Earth
Explorer platform.

Material Classification

ENVI Classification We performed a classification on all three selected 
images using ENVI version 5.6.1 to identify materials. The classifications 
were unsupervised, and classes were identified in post-processing. We 
used an Isodata (also known as Iso-cluster) unsupervised classification al-
gorithm, consisting of a calculation of class means distributed across the 
image followed by an iterative clustering of remaining pixels using min-
imum distance. At each iteration, the mean is recalculated, followed by 
a reclassification of pixels according to this new mean29. We selected 2 
combinations of bands for our classifications: bands 1 to 4 and bands 2 to 
5. All images were layer-stacked as a combination of these selected bands 
and cropped in a quadrilateral over the region of Montréal. We entered a 
condition of 5 to 7 classes within the algorithm, with a total of 100 itera-
tions for each classification.

Two classifications were performed on the August 10th image with bands 
1 to 4 and 2 to 5 combinations. The classification for bands 1 to 4 has a 
total of 6 material classes, with 2 different classes corresponding to ur-
ban materials: one for asphalt and gravel, and a second one for concrete 
and rooftops. Vegetation for this classification is spread across 3 material 
classes: grass, grass and urban vegetation, and forest cover. Water is the 
final class. For bands 2 to 5, a total of 6 material classes are identified: ur-
ban materials (concrete and asphalt), concrete and highly reflective roofs, 
water, short vegetation (grass and urban trees), and forest cover. While 
some material classes, such as concrete and reflective roofs, appear on both 
classifications of the different multispectral images, the spatial distribution 
and accuracy of differentiating materials from one class to another may 
vary widely, meaning that despite having similar classes, both classifica-
tions are different. 

Classifications for all images were completed using bands 1 to 4 because 
they made a clearer distinction between urban material classes. These clas-
sifications, however, proved to be variable between different images and 

conditions; the 2020 images had one more material class than the 2021 
image, and varying degrees of importance between the urban materials. 
We ultimately conducted the following analyses using the material clas-
sification from August 10th 2021, as it was the most precise classification 
performed in terms of defining and isolating urban materials of different 
nature. Though ENVI was effective in distinguishing urban materials, we 
did not judge its vegetation classification as satisfactory.

NDVI Classification We used the NDVI as an alternative method to clas-
sify vegetation across Montréal. The NDVI is an indicator of vegetation 
proportion by measuring the difference in near-infrared (NIR) and red 
(R) values for surface reflectance captured by satellite sensors30,31, based
off the fact that NIR is scattered by mesophyll leaf structure, while red is 
strongly absorbed by chlorophyll32:

where each band’s Surface Reflectance pixel values (PV) are scaled as fol-
lows33:

We applied a scaling factor because the Landsat Collection 2 Level-2 sur-
face reflectance data product is stored in 16-bit integer format with values 
ranging from 0 to 65535. The scaling factor simply converts the unsigned 
16-bit integer to a float value representing surface reflectance in usable 
units. 

NDVI values run from -1.0 to 1.0. Areas of sparse vegetation, which in-
clude grass and areas with isolated shrubs or trees, show moderate NDVI 
values (approximately 0.2 to 0.5) while high NDVI values (approximately 
0.6 to 0.9) correspond to dense vegetation such as forests34.

Image Manipulation

Identifying MUHIs The Landsat 8 thermal images (band 10) we selected 
were processed and analysed using the Rasterio package in Python. First, 
the surface temperature rasters were masked using a shapefile defining the 
island of Montréal35. Similar to the surface reflectance data products, the 
masked rasters were then converted to surface temperature in Kelvin using 
the following scaling factor33:

where PV is the Surface Temperature value at a given pixel in a raw Land-
sat 8 Collection 2 Level-2 surface temperature image. After we obtained 
surface temperatures in Kelvin, two temperature thresholds were applied. 
The first is defined as “any urban areas radiating higher temperatures
than the warmest temperatures associated with tree canopy,” as defined 
by Aniello et al.1. Therefore, any area with a surface temperature greater 
than the highest dense vegetation temperature, found using NDVI, was 
considered a MUHI. The second threshold is defined as the top 2% of tem-
perature values which was chosen since it roughly corresponds to two 
standard deviations above the mean, and can therefore be considered sig-
nificantly higher than the mean temperature. By identifying which pixel 
temperatures are greater than the threshold, we generated a mask, or bi-
nary image, that shows MUHI locations on the map of Montréal.

Comparing MUHIs and Surface Types Similarly, we generated masks 
showing the locations of asphalt and concrete on the island by identifying 
pixels whose RGB values match the colour corresponding to that material 
in the classification. Masks were also generated to locate regions of dense 
and sparse vegetation. To compare MUHI locations and surface material 
types, we generated a third map by “overlapping” the MUHI and mate-
rial masks. A new raster was created from these two masks by assigning 
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each pixel a value corresponding to one of the following: MUHI, material, 
MUHI and material, or neither.

Results

The Tables 1, 2 and 3 summarize the main parameters obtained for images 
from August 10th, 2021, July 6th 2020, and June 20th, 2020, respectively, and 
compare the two temperature thresholds. In each, “Portion of a Material 
that Contains a MUHI” refers to the proportion of total area of each
material on the island that is classified as a MUHI, and similarly, “Portion 
of MUHIs that Contain Material”, refers to the proportion of total MUHI 
area that is classified as that material. MUHIs are composed of mostly as-
phalt and concrete: more than 83%, 88% and 86% of MUHIs using either
threshold definition are associated with one of these materials on August 
10th 2021, July 6th 2020 and June 10th 2020 respectively. However, most 
asphalt and concrete are not part of MUHIs: on August 10th 2021, only 
13.5% of asphalt-covered areas (unvegetated and vegetated) and only 
8.83% of concrete-covered areas are associated with MUHIs defined by the 
2% threshold, and even less for the canopy threshold. Results are similar 
for the 2020 images.

MUHI distributions for the tree canopy and the 2% thresholds were plot-
ted over the island of Montréal for August 10th (see Fig. 1), 2021, July 6th 

2020 (results not shown), and June 20th, 2020 (results not shown). MUHIs 
on the island are mainly located in Dorval and Saint-Laurent. These are 
where the Montréal Trudeau International Airport, the industrial Tech-
noparc, and many large box stores are located.

To investigate the effects of vegetation on MUHI formation, we examined 
asphalt-covered areas that overlap with sparse vegetation and compare to 
asphalt areas with no vegetation. We found that unvegetated asphalt has 

approximately 5-20 times more MUHI area than sparsely vegetated as-
phalt (Tables 1, 2 and 3). We also compared MUHI locations and dense 
vegetation coverage, shown in Fig. 2.

Figure 1. MUHI Distribution on the Island of Montréal on August 10th 2021. (A) Canopy 
threshold, (B) Top 2% threshold. MUHIs are in white. Notable MUHI locations are circled 
in (A): Trudeau International Airport (light blue), Bombardier Aerospace Complex (red), 
STM Centre de transport Legendre (yellow), Canadian Forces Base (pink), and Carrefour 
Angrignon (green).

Figure 2. MUHI and Dense Vegetation Cover on the Island of Montréal on August 10th  
2021. MUHIs have been identified using the top 2% threshold.

Figure 3. MUHI overlap with asphalt and concrete on August 10th, 2021. MUHIs are 
identified using the top 2% threshold. The region of the Montréal Trudeau Internation-
al Airport is zoomed in.

Table 1. MUHI parameters for the two threshold definitions on August 10th, 2021.

Table 2. MUHI parameters for the two threshold definitions on July 6th, 2020.
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Discussion

MUHIs and Surface Types

Urban Materials Areas with high MUHI density are sparsely vegetat-
ed and are dominated by asphalt and concrete surface coverage - all of 
these factors are known to enhance urban heating36. However, the pres-
ence of asphalt or concrete in itself does not necessarily lead to MUHI 
formation. In Montréal, most asphalt and concrete areas appear to lack 
other qualities that would otherwise make them MUHIs, namely re-
ceiving direct solar radiation. Because the measured quantity is surface 
temperature, a full picture of the effect of MUHIs is obscured since air 
temperature is more akin to what one would “feel”. Because of this, the 
intensity of MUHIs may be overestimated, and the effect of vegetation 
density maybe be underrepresented. In the absence of high-resolution 
air temperature measurements, remote sensing is the only way to study 
this phenomenon, despite it introducing a bias toward warmer tempera-
tures. The images being taken early in the day also affects MUHI com-
position; urban materials with high heat capacities may be underrep-
resented as they did not have time to heat up, while materials with low 
heat capacities are overrepresented. Despite most asphalt and concrete 
not being part of MUHIs, MUHI composition is still dominated by these 
materials. This indicates that the surface material type influences MUHI 
generation, but is not the only factor. 

Vegetation Our observation that unvegetated asphalt has several 
times more MUHI coverage than vegetated asphalt may be partly due 
to thermal anisotropy in cities, e.g. the satellite only detected the sur-
face temperature of a tree and not the road beneath. Nonetheless, it is 
well-documented that vegetation can cool urban spaces through evapo-
transpiration37-39. The stark difference in MUHI coverage between veg-
etated and unvegetated asphalt suggests that vegetation plays some role 
in preventing MUHI development in Montréal. However, we found that 
sparse vegetation alone is not always sufficient to prevent MUHI forma-
tion; on August 10th, 2021, 9.82% of MUHIs as defined by the canopy 
threshold contained sparse vegetation. 

Sparse vegetation includes grass, which dries out much faster during pe-
riods of low precipitation and becomes hotter. Soil moisture generally 
increases with depth40, so trees, which have deeper roots, have better ac-
cess to moisture during dry spells and can continue transpiring to main-
tain cooler surface temperatures. Surface soil moisture varies diurnally 
and seasonally: high soil moisture is associated with cold near-surface 
air temperature and low near-surface wind speed, while dry soil is as-
sociated with warm temperatures and high wind speeds41. In Montréal, 
the monthly average precipitation in August 2021 was one of the lowest 
of that year (36.1 mm), while June and July 2020 had slightly more pre-
cipitation (46.4 and 86.8 mm, respectively)42. Low soil moisture may be 

responsible for the greater contribution of sparse vegetation to MUHIs 
on August 10th, 2021 compared to the other two dates. 

In our selected images, densely vegetated surfaces remained cooler 
overall. In addition to dense vegetation reducing heating on the surface 
where it is present, it may also reduce heating around the boundary 
of vegetation. In Fig. 2, we see that there is a MUHI-free buffer zone 
between the hottest areas (i.e., top 2% of surface temperatures) on the 
island and large areas of dense vegetation like Mount Royal Park and 
Morgan Arboretum. This buffering phenomenon has previously been 
observed for air temperatures13.

MUHI Locations As shown in Fig. 1, MUHIs as defined by the canopy 
threshold are sparsely distributed compared to the percent threshold - 
the former method is much more selective, as the canopy threshold tem-
perature is much higher than the 2% threshold temperature (see Table 1).
The highly selective canopy method allows the identification of specif-
ic locations and structures that are associated with the absolute hottest 
MUHIs on the island. Notable MUHI locations include the Montréal 
Trudeau International Airport (Dorval), the Canadian Forces Base of 
Montreal, the Bombardier Aerospace complex (Saint-Laurent), the STM 
Centre de transport Legendre, and the Carrefour Angrignon (LaSalle). 
In Fig. 3 we can see that these areas are not fully covered by MUHIs,
but MUHIs are located towards the center of these areas. This is consis-
tent with the observation in previous work that MUHIs are hottest at 
the center1. We consistently observe that urban locations surrounded by 
large, uninterrupted areas of urban surface cover, rather than vegetation, 
are most susceptible to MUHI formation.

Limitations

Material Classification We found inconsistencies between the classifica-
tions with bands 1 to 4 of our 3 images, which introduces uncertainty in 
the MUHI compositions presented in Tables 1, 2 and 3. The unsupervised 
classification algorithm from ENVI version 5.6.1 identified 7 classes for 
both images from 2020, but identified 6 classes for August 10th 2021. Since 
the classification was unsupervised, clusters were identified automatically, 
which may introduce variability if the images were taken under different 
conditions. Vegetation cover and biomass, as well as vegetation species 
distribution can vary slightly in relatively short periods of time, which may 
introduce variability between classifications of images between 2020 to 
2021. Knowing this, it is possible that the unsupervised classification algo-
rithm generated different clusters between images from different periods, 
resulting in fewer material classes for the image in August 10th 43. More-
over, the quadrilateral region of the images under which classifications 
were performed includes several fields and agricultural complexes. This 
likely introduced additional variability within the clustering done dur-
ing the unsupervised classification. It is also important to note that the 
choice of bands introduced flaws within the unsupervised classification. 
The ultra-blue band (443 nm) easily penetrates water and vegetation, 
which often results in the classification of some vegetated areas as water 
and vice-versa44. However, classification from the combination of bands 
1 to 4 proved to be more reliable to differentiate between urban materials 
than the combination of bands 2 to 5. It is possible that under different 
conditions, another combination of bands could have shown better results.

Thermal Anisotropy Another limitation is the effective thermal anisotro-
py, or uneven surface temperatures, produced by Montréal’s 3D geometry 
and uneven surface heating. This is particularly limiting in densely built 
areas like Montréal’s downtown core. Satellites only capture a 2D view of 
surface temperature, so some features may not be “seen” by the satellite. 
For example, a small park may be obstructed by a tall building; the satellite 
may only see the surface temperature of the building and mischaracterize 
the area as hotter than it actually is. Though Landsat 8 viewing angles are 
near-nadir, surface temperatures can still significantly vary between imag-
es collected at these slightly different angles. Vertical surfaces are almost 
entirely absent from the imagery, so we could not assess their contribution 
to MUHIs in Montréal.

Table 3. MUHI parameters for the two threshold definitions on June 20th, 2020.
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Conclusion

In this study, we identified the location and general causes of two defini-
tions of micro-urban heat islands on the island of Montréal using 3 ther-
mal images from the Landsat 8 Earth-observing satellite. Classifications 
done during our analysis identified several urban materials on the island of
Montréal, but there were important factors that introduced variability 
within the unsupervised classification algorithm, thus affecting clustering 
and the number of classes between images. Using a larger set of images 
spread over a longer period of time could reduce variability. In addition,
using a mask to isolate the island before classification could reduce the 
influence of agricultural activity in surrounding rural areas on the unsu-
pervised classification clustering. Performing a supervised classification, 
while being more time consuming, could generate a much more reliable
set of classified images. Areas of future work include analysing the season-
ality and evolution of MUHIs using Landsat images over several seasons 
and years, and correcting for anisotropy by estimating Montréal’s com-
plete urban surface. This would include surfaces normally absent from
satellite images, and thus provide a more accurate classification of materi-
als and MUHIs on the island6. 

In conclusion, we find that micro-urban heat islands on the island of Mon-
tréal are mainly associated with urban materials, but the presence of urban 
materials in itself is not a strong predictor for MUHI formation. We also 
find that almost no MUHIs (defined by the top 2% threshold) exist very 
close to dense vegetation; these zones act as a buffer to MUHI genera-
tion. In contrast to our hypothesis, we find that a significant proportion of 
MUHIs are associated with sparse vegetation, implying that not all forms 
of vegetation are equally efficient at reducing MUHI formation. These
findings highlight the importance of dense green cover within Montréal 
to reduce the intensity of urban heating, and can be used to focus heat-re-
lated health mitigation efforts on the most vulnerable parts of the city, as 
well as inform building practices to reduce the generation and intensity 
of MUHIs.
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