
The Difficulty In Computing Ancestral DNA
Sequences: Using Computational Analysis

To Reconstruct DNA Sequences

Intriguing work has been carried out in order to decipher the genetic codes of today’s existing species. However, little is
known about the genetic makeup of species that existed long ago. Exciting possibilities have recently been raised in the
field of computational analysis (1), proposing that reconstruction of ancestral DNA sequences can be performed if the
DNA sequences of the existing species are known. Being able to perform such reconstructions would simplify the study
of the evolution of these species, and uncover many mysteries regarding life that once existed on this planet.

In order to perform reconstructions of unknown ancestral DNA sequences, many different types of problems must be
solved, all of which can be approached computationally. Examples of such problems include building a phylogenetic
tree of the evolutionary line in question, determining a multiple alignment of the existing species being analyzed, or
working out the actual identity of the nucleotides within the ancestral sequence. The problem presented in this paper
considers the level of modification within the ancestral sequence.

Considering the diversity of the problems at hand, one must realize that
not all of these computational problems can be solved. In other words, the
complexity of certain problems is such that it would currently take a
computer an unrealistic amount of time to solve these types of problems.
In such situations, these problems are deemed ‘hard’.

The following analysis will provide a detailed computational definition of
the problem in question. The aim is to define the components of the
analyzed problem, and will not provide any solution to the problem.
This definition is succeeded by the problem reduction, which will assess
the hardness of the problem at hand. In fact, it will be shown that the
problem is ‘hard’, and is impractical to solve. This is achieved by reducing
a standard computational problem known to be hard to the problem in
question.

Problem Definition

In order to attempt to solve the problem in question, input data are
necessary, which include the sequences of the existing species, the
phylogenetic tree for this evolutionary line, and the multiple alignment of
the present-day species’ sequences (fig. 1, a-c). The phylogenetic tree is
necessary to give an idea of how the species are related to one another.
Existing species occupy the outside positions of the tree, termed the
‘leaves’, while the ancestral species occupy the internal positions of the
tree, termed the ‘nodes’ (fig. 1, a). The multiple alignment is used to ana-
lyze a specific stretch of DNA within each species being analyzed and to
compare the differences and similarities between the stretches. Once

Zhentao Lia and Mathieu Blanchetteb

aSchool of Computer Science, McGill University, 3480 University St., Montreal, Quebec, Canada, H3A 2A7.
bMcGill Centre for Bioinformatics, 3775 University St., Rm. 332, Montreal, Quebec, Canda, H3A 2B4.

Correspondence should be addressed to Zhentao Li: zhentao.li@mail.mcgill.ca

Key Terms
Phylogenetic tree:
a tree-like diagram demonstrating the relationship
between ancestral species and contemporary species

Multiple alignment:
an alignment of DNA sequences, whereby homologous
positions are lined up with respect to one another

Deletion:
takes all characters (0 or 1) in a contiguous region, and
transforms them into 0’s (gaps). For example, ‘10101’
becomes ‘00000’

Insertion:
takes a contiguous region of 0’s (gaps) and transforms
some of the 0’s into 1’s (nucleotides). For example,
‘00000’ becomes ‘10101’

Instance:
a specific case or an occurrence of a problem. For
example ‘3 +4 = ?’ is an instance of the addition
problem ‘a+b=?’

Problem reduction:
turning all instances of one problem into instances of
another problem

Reducing:
showing that a problem can be solved by using the
solution to another problem page

24

MSURJ • Spring 2006

journal.qxd 3/13/06 9:31 PM Page 1

aligned, the sequences are then transformed into an
arbitrary code of 1’s and 0’s, based on the presence or

the absence of a nucleotide at each position (fig. 1, d).
If a nucleotide exists at a certain position, it is transformed
into a 1. Conversely, if no nucleotide (i.e. a gap) exists at a
certain position, it is transformed into a 0. The task is
then to find the most probable sequences of 0’s and 1’s
at the internal nodes, which represent the sequences of
the ancestral species. Such a set of sequences is called
a solution. In this model, the most probable sets of
sequences are those that will minimize the total number
of sequence changes in the tree. A change can manifest
itself as either a deletion or an insertion. There is an extra
restriction, which is that a previously deleted nucleotide
within the timeline cannot be re-inserted at a later time
into a specific sequence within the tree. A solution which
minimizes the number of insertions and deletions is called
an optimal solution. An example of a solution is shown in
fig. 2.

Problem Reduction

Now that an example of the problem has been shown, the
problem reduction will prove that it cannot realistically be
solved. In other words, this problem is deemed ‘hard’.
As such, there is no general way of finding a solution to
the type of problem described previously in the problem
definition. Consider the problem in question to be named
ADR, for ‘ancestral DNA reconstruction’. The way in which
this problem is shown to be hard is by proving that it is
at least as difficult to solve as a “benchmark” problem,
named NAE-3SAT. NAE-3SAT, or ‘not all equal 3
satisfiability’, is a problem that is known to be
computationally difficult in the field of computer science.
The way in which this is proven is to show that any
instance of NAE-3SAT can be reduced to ADR.

NAE-3SAT Problem Definition

An instance of the NAE-3SAT problem consists of
variables, literals and clauses. The variables (named X1,
X2, etc) can be assigned a value of either ‘true’ or ‘false’.
A literal is either a variable (e.g.:X3) or the negation of a
variable (e.g.:X¯1). A clause is a set of three literals.

In an NAE-3SAT problem, the goal is to assign a value
(true or false) to each of the variables that satisfy all the
clauses in the problem. A clause is satisfied if at least

one literal is assigned as ‘true’ and at least one literal
is assigned as ‘false’. For a given assignment of the

variables, the literal Xi is assigned the same value as the
variable Xi and the literal X¯i is assigned the opposite
value. An assignment which satisfies all the clauses is
called a satisfying assignment. A solution to an instance
of NAE-3SAT is a satisfying assignment.

The proof

The following is a simplified version of the proof. This
is the general scheme used to reduce a problem.

Assume that there is a way to solve ADR, without
performing an unrealistically large amount of
computations. NAE-3SAT can then be solved
computationally in the following manner:

1. Given an instance of an NAE-3SAT problem, construct
an appropriately chosen instance of ADR. In other
words, determine the input that one wishes to analyze.

2. Solve this instance of ADR, which consists of inputting
the data that was determined in (1). This is possible,
as it was previously assumed that there was a way

of solving ADR.
3. Obtain the solution that is found for the ADR problem

and translate it into a solution to NAE-3SAT.

If it is determined that ADR can be solved once these
computational analyses have been performed, then
NAE-3SAT can also be solved. This would contradict the
hardness of NAE-3SAT. Therefore, the initial assumption
that we could solve ADR quickly must have been false.
The whole proof now relies on constructing the so-called
‘appropriate chosen instance’ of ADR given an instance
of NAE-3SAT. The rest of the proof is a description and
explanation of this construction. Recall that a phylogenetic
tree must be given in an instance of ADR. In this
construction, it will have the shape shown in fig. 2, b.

If there is a satisfying assignment to the given instance
of NAE-3SAT, it must somehow be found. In this
construction, this shall be obtained from the sequence
found at the S node of the phylogenetic tree shown in
fig. 3, b. On the other hand, if there is no satisfying
assignment to the instance of NAE-3SAT, the construction
will force the total number of operations (i.e. insertions or
deletions) in any optimal solution to be greater than some
fixed number.

In preparation for step 3, any optimal solution for the
sequence in the S node will be forced to have a certainpage

25

MSURJ • Spring 2006

journal.qxd 3/13/06 9:31 PM Page 2

structure, allowing it to be translated in such a way that
it becomes a solution to NAE-3SAT.

Initially, some of the positions of the sequence within the
S node are forced to be 1 in any optimal solution. This is
done by setting some of the leaves to specific strings.
In so doing, other solutions will be forced to have more
operations. This will be useful since if both the sequences
within the S node and within a given leaf have a 1 at any
given position, no insertion or deletion can go through this
position (recall that a nucleotide cannot be re-inserted
once deleted).

A region of contiguous positions in the S node will be
reserved for each variable in this particular instance of
NAE-3SAT. Depending on what is in this region of the S
node sequence, one will know what to assign the variables
in the NAE-3SAT problem (if a satisfying assignment
exists). In fact, the idea is to force each region to only
have two possible values in any optimal solution. Again,
this is achieved by forcing other solutions to have more
operations. Depending on which of the two values is
assigned, it will become clear as to what value (true or
false) is to be assigned to each variable.

The only remaining task is to ensure that the solution
obtained will satisfy each clause. A different set of leaves
can be used for each clause. Such a task is not as simple
as it first seems. However, one easy aspect of this
operation is to construct leaves in which the number of
literals in a clause assigned ‘true’ can be counted. In this
particular sense, the term counted refers to the fact that
the number of operations needed is proportional to the
number of literals set to true. But more than just counting
is needed.

It is necessary to force any optimal solution to have at
least one literal set to true and at least one literal set to
false in any clause, if there is indeed a satisfying
assignment. To do so, strings are designed at the leaves
which can count the number of literals set to true, two
at a time. Along with other such tricks, like taking
combinations of different strings, this will guarantee to
find a satisfying assignment, if it exists.

Conclusion

The most immediate implication of the hardness of the
ADR problem is that large instances of the problem
(ex.: 1,000,000 nucleotides) are most likely not going to

be solved in a rapid manner. This is problematic in
practice as the large problems, such as reconstructing
whole genes, are those that generate the most interest.
However, the findings described above do not render this
reconstruction hopeless, as other smaller instances of the
problem may still be solved. It would also be possible to
obtain sub-optimal solutions for these larger instances,
though accuracy would be lost in such a reconstruction.
Though many obstacles remain towards achieving the goal
of ancestral genome reconstruction, computational
analysis is still a powerful tool by which such
reconstructions can be performed.

Special thanks to Leonid Chindelevitch for his
contributions to this project.

References

1. Mathieu Blanchette, Eric D. Green, Webb Miller, and
David Haussler. Reconstructing large regions of an
ancestral mammalian genome in silico. Genome Res.,
14(12):2412-2423, December 2004.

page
26

MSURJ • Spring 2006

Figure 1. Example of information input. Clear circles represent the existing
species, termed the leaves of the tree. Dashed circles represent the
ancestral species, termed the internal nodes of the tree. (a) A phyloge-
netic tree. (b) DNA sequences of the existing species. (c) Multiple
alignment for sequences found in (b). A ‘-’ represents a gap. (d)
Conversion of the nucleotide input into an arbitrary code of 1’s and 0’s.

Figure 2. Example of a solution. The highlighted branch, denoted by a box, shows
an insertion and a deletion.

Figure 3. (a) Example of an instance of NAE-3SAT along with a satisfying
assignment. The second assignment is not satisfying since all literals
within clause 1 are set to false. (b) An instance of ADR is constructed
and then solved. (c) The solution is analyzed, looking specifically at the
string within the S .node. From this, a satisfying assignment for
NAE-3SAT can be found

journal.qxd 3/13/06 9:31 PM Page 3

