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Financial mathematics must make use of assumptions in the 
development of mathematical models that provide predic-
tive power on the behavior of economic markets, as it is im-
possible to collect data on the market as a whole.  As a result, 
important quantities, such as the risk-measurement of a port-
folio, are often inaccurately estimated. The financial market 
seems to be an erratic, pattern-less system. Indeed, attempts 
to find patterns, and to explain the processes behind the price 
movements of an asset, have been largely unsuccessful. This 
is analogous to the ‘Turkey Problem' described by N. Taleb in 
his book "The Black Swan". To illustrate, a turkey spends its life 
being fed and raised for slaughter, a fact that is unbeknownst 
to it. From the point of view of the turkey, life is delicious and 
predictable, until the day it is killed. For the turkey, its death is 
a ‘black swan event’, as it represents something highly unpre-
dictable and catastrophic. This same type of uncertainty is 
also present in financial markets.

Numerous examples of events with a significant impact 
on the system demonstrate the failure of the current model 
can be found. The fate of Long Term Capital Management 
(LTCM) is one such example. LTCM failed to predict the col-
lapse of the Russian ruble, as it assumed that the Russian go-
vernment defaulting on its bonds would be a highly unlikely 
event. Current theory describes these catastrophic events as 
so highly improbable that their very occurrence is near mira-
culous, and cannot be predicted. This would be a reasonable 
theory if there was only one such event, perhaps two, in the 
course of history. However, one can find plenty of examples 
of these so-called impossible events by examining historical 
data. This raises the question; if these events are happening 
with a higher frequency than expected, is our current model 
correct? It is important to remember that markets do not 
obey a model, but rather the model seeks to explain the be-
havior of markets. As such, we must attempt to construct a 
model that resembles and predicts our observed data, or the 
model should be deemed invalid.

Central to the classic financial model is the Gaussian or 
normal distribution. If a sample of numbers is normally distri-
buted it should cluster around a mean or average value, and 
the likelihood of an event is increasingly rare as it deviates 
further from this mean. The occurrence and magnitude of 
these deviations are described by the variance of the distri-
bution.  As such, the normal distribution is described by two 
natural parameters, the mean and the variance. The normal 
distribution is followed by many natural systems, and as a re-
sult this mathematical model has found applications in many 
diverse fields from astronomy to population dynamics.

When describing a natural phenomenon, such as the 
stock market, we seek to produce a model that is able to 
match an observed pattern. For example, in financial time 
series, we consider the difference between the natural loga-
rithm of the prices. To illustrate this, consider a time series

 where the subscript t indicates time intervals. Consider the 
set of values

 

This is our variable of interest, the unit-free difference 
in stock prices. It is this variable which classical financial 
theory assumes to be normally distributed. In other words, 
we expect the value of a price change over one time interval 
to be close in value to the mean of the normal distribution, 
with significant deviations away from the mean being quite 
rare. If for example we assume our changes to follow a stan-
dard normal distribution, which means it has a mean of zero 
and a variance of one, we would expect the price difference 
to be zero, so our prices would be constant, and large price 
fluctuations (whether positive or negative) to be rare. The 
other important condition that is imposed on this model is 
that each event is independent. Assuming the price changes 
follow a standard normal distribution, we can base models 
on Brownian motion, which is the same concept that descri-
bes the movements of particles in fluid. This concept is the 
foundation for the derivation of the famous Black-Scholes 
equation, which is used to anticipate market movements by 
generating a probable value for equity pricing. 

Now consider our variable of interest, the change in 
stock prices, and examine the consequences of assuming 
this variable to be drawn from the Gaussian curve. Our first 
assumption is to expect the data to be centered around a 
mean, which has been shown to be true empirically (Tsay, 
2005). However, a problem arises in discussing "outliers" in 
the data, points that are at least two standard deviations 
away from the mean. In financial data, one is often presen-
ted with these anomalies. For example, consider the stock 
market crash in 1987, or the internet boom in the 1990s. 
These events deviated widely from the trend. We can also 
consider the magnitude of these outlying events. Yet based 
on the Gaussian distribution model, the odds of a value fal-
ling far away from the mean is fairly low. Can the Gaussian 
model be applied to financial data? Does the normal distri-
bution allow for absolute price movements ten times the 
average return? 

We will consider the weekly closing prices of General 
Electric as listed by Yahoo! Finance from January 8, 1962 
to September 4, 2007. General Electric is an ideal choice 
to represent the 'average' asset on the market, as its am-
ple data, size and market diversity reflects general market 
trends. This provides us with 2382 observations which will 
allows us to use large sample properties. If we assume that 
the price changes are normally distributed we can find the 
estimated parameters of the normal distribution. In the 
case of GE we find the mean = $0.0002487107 and the va-
riance = $0.002518528.

Within this data set I have identified eight statistically 
impossible events. These events represent large price chan-
ges. While one such event, such as the 1987 stock crash, 
may be accepted as a statistical anomaly, the occurrence of 
eight such events over a time period of 45 years is statisti-
cally improbable and contradicts the prediction of our mo-
del. We therefore suspect that the returns are not normally 
distributed. The very existence of these outliers shows that 
there are observations that cannot be explained by the cur-
rent theory. It seems that these events occur frequently and 
generally have lasting impact on the markets. Shouldn't 
a model that claims to understand the dynamics of price 
changes take these events into account?
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The second essential assumption made is that price 
movements are independent of each other.  Intuitively, one 
would think that this is not true at all. In fact, consider an indi-
vidual purchasing stock. The purchase is made based on the 
stock’s past performance, particularly its recent performance. 
By standardizing our sample (simply subtracting the mean 
and dividing by the variance) we can assess whether these 
price movements are independent by analyzing increasing or 
decreasing streaks in the data. If price changes are indepen-
dent, there should not be any noticeable streaks in the data 
(large consecutive positive or negative price movements). 
With this in mind, we find that indeed our data reflect the 
presence of increasing and decreasing streaks, which are im-
probable under the classic Gaussian model.

An alternative theory has been explored. Benoit Mandel-
brot has developed the area of fractal finance in order to ex-
plain these issues that other models have dismissed. He de-
monstrates that this fractal view of the market, which in some 
ways is actually an elegant generalization of the Brownian 
motion concept, fits the observed data more closely than 
the Gaussian model (Mandelbrot 2004). Simply put, fractals 
are mathematical objects that look the same when viewed 
at both low and high resolution. In the case of stock prices, 
increasing the resolution means looking at smaller time sca-
les. To understand this, consider the following three graphs of 

GE stock returns. It is impossible to distinguish between the 
graphs with time scales of days, weeks and months.

This fractal property coupled with a random element 
seems to be a better model for price changes. The Multifrac-
tal Model of Asset Returns (MMAR) was introduced by Man-
delbrot. X(t) is a compound process, such that

Where  is a fractional Brownian motion operator 
with self-affinity index  ,and  is the stochastic trading 
time. While the components of this model reflect complex 
mathematics, we can still understand how it works.

The self-affinity index H accounts for the observation 
that no matter what time scale you consider, the system 
looks the same. This allows the model to compensate for 

streaks in the data, something which our classical model fails 
to do. For example, large values of H at some given time re-
sult in persistent trading (trading in the same direction), 
while low values of H indicate very little movement. The sto-
chastic trade time , is called a multi-fractal process. This 
captures the fluctuations in the observed volatility of the 
data. In other words, this allows the model to take into ac-
count what has happened in the past, while allowing for ex-
treme price changes, extremely improbable in the classical 
model. In refining a model in this fashion, a particular ques-
tion arises; is our new model more general than the previous 
model?  Alternatively, can we, under certain restrictive condi-
tions, obtain our classical model from our fractal model? As 
we cannot derive the classical model from the fractal model, 
if the fractal model is indeed legitimate, the classical model 
cannot be right, and thus has no real value in describing fi-
nancial markets.

To conclude, we have explored the current view of the 
financial markets, assuming that a simple Brownian engine 
drives the observed price changes in the financial market. 
We utilized real data and tested the assumptions of this mo-
del to see whether the actual data followed the proposed 
model.  Specifically, we identified a set of events occurring 
relatively frequently which would be impossible based on 
the classical model. We also noticed the presence of trends 
in the price changes which provide evidence against the 
independence of these returns. This in turn implied that 
our model should incorporate some sort of memory of the 
past, so we proceeded to incorporate the property of time 
scale invariance. With this in mind, we presented the MMAR 
model, which reflected these observations. Under the cur-
rent mode of thought, models like the Black-Scholes pricing 
equation underestimate the potential of large increases or 
decreases in value. These are not merely potential events, 
but have already occurred, including the collapse of the Rus-
sian ruble, the collapse of the subprime mortgage market or 
Long Term Capital Management, among other financial di-
sasters in history. While we cannot be certain that markets 
obey the MMAR model, at the very least we can affirm that 
it is a more accurate representation of financial returns, ren-
dering the classical model obsolete.  
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