
McGill Science Undergraduate Research Journal - msurj.mcgill.ca��

Operational transformation in cooperative
software systems
Clarence Leung�*

1 School of Computer Science, McGill University, Montreal, QC

Abstract

Modern cooperative software systems involve multiple concurrent users undertaking a common task
in a real-time distributed environment, such as editing a shared text document. Maintaining data
consistency, transaction causality, and replication convergence in such an environment, while providing
fast client responsiveness, is a substantial challenge for classical distributed computing techniques.
Operational transformation (OT) is a class of concurrency algorithms and data models that supports these
functionalities, which has drawn signicant research attention in the past decade. In this review, we discuss
the basic components of operational transformation models, the algorithms involved, and their actual
implementations in real-world networked systems. We compare several existing OT control algorithms,
the transformation functions and properties supported by each of the algorithms, and the trade-offs that
are made with respect to each one. The data and operational models used in OT are well suited for high-
latency environments such as the Internet, making them more frequently used in modern web services.
Although many different OT control algorithms exist, choosing the most effective one often depends on
the particular operations that an application must support.

REVIEW ARTICLE

Introduction

Research in computer-supported cooperative work (CSCW) in the
past decade has led to the development of many new collaborative
web services, such as blogs, wikis, and social networks. These serv-
ices can span from only a few simultaneous clients over a local net-
work, to millions of daily users worldwide. Handling the availability
of these services becomes more difficult at a larger scale, especially
in modern web applications, where notifications of user actions must
be delivered in near real-time (1, 4, 7).

However, a common problem that arises when engineering real-time
applications, such as collaborative editing services like Google Docs,
is to find the appropriate way to handle conflict resolution due to
multiple concurrent users. Traditional (pessimistic) approaches to
concurrency prevent conflicts from occurring by locking a resource
while a client is accessing it, but doing so leads to slower application
responsiveness as multiple users are unable to modify a document
simultaneously. Other approaches to concurrency, such as optimistic
concurrency techniques, assume that data contention is rare, and es-
chew locks in favour of repairing conflicts when they occur. Howev-
er, in real-time applications, conflicts are common, and thus simple
optimistic concurrency techniques cannot be used without hurting
performance while repairing broken states.

A new class of optimistic (non-locking) algorithms and data struc-
tures, known as operational transformation (OT), has been highly
researched in the past decade in solving these conflict resolution
problems. OT algorithms function by considering all user-submitted
actions as units known as “operations”, and handle any operations
that conflict with each other by changing their properties relative
to the changes that have already been applied to a particular docu-
ment.

In this paper, we formally discuss the characteristics of real-time web
applications, as well as the models required for us to properly verify
that our documents are consistent. Using these models, we describe
the operational transformation approach in detail, and survey sev-
eral different approaches to OT that have been developed.

Traditional web approaches

Traditional web services handle client concurrency through the ba-
sic request/response model provided by HTTP, an asymmetric proto-
col. Request/response paradigms work by not having any response
until a client specifically initiates a request to a web server, so no
information is passed directly from the server to the client even if
new updates have occurred on the server (7).

This protocol would be successful in applications that did not re-

*Email Correspondence:
clarence.leung@mail.mcgill.ca

Volume � - Issue � - March �0�� ��

operational transformation in cooperative software systems

quire real-time delivery of user actions, which most blogs, wikis, and
representational state transfer (RESTful) web applications would be
considered. However, for modern web applications that require real-
time collaboration, there are several challenges that need to be over-
come. Data must often be broadcasted from the server to the client,
to keep the results of user actions up to date. This “server push”
can be simulated through continuous polling of the HTTP resource,
or keeping a live client-server connection, but this often results in
a fragile connection, as it uses the HTTP protocol in a way that it
was not intended to be used. Beyond the problems associated with
response time, traditional pessimistic concurrency schemes, where
a document is locked while one user is updating it, are often poor
for developing real-time applications due to a lower responsiveness
(2, 3).

Collaborative editing systems

One of the more well-known applications of real-time web services is
those of collaborative editing systems such as Google Docs or Ether-
pad (14). These services provide traditional word processing and
spreadsheet applications, but through a shared interface that allows
simultaneous editing of a document.
There are three main characteristics that define a collaborative edit-
ing system (6):

Real-time: The local client interface should have a fast response
time. Optimally, it should have a response time similar to a sin-
gle-user editor.

Distributed: Each user may be geographically separated, from
different machines to different communication networks, with
varying latency delays.

Unconstrained: Any user can freely edit any part of the docu-
ment at any time, without any constraints.

Instead of a pessimistic concurrency scheme, collaborative editing
systems often use an optimistic concurrency scheme, where a non-
locking transaction scheme is used. Replication is often used in order
to allow the local client interface to respond quickly, by having local
actions immediately update the local copy of the document. These
factors provide the necessary responsiveness for real-time applica-
tions, but now lead to a new difficulty: maintaining consistency and
properly resolving conflicts throughout the document, while multi-
ple clients are concurrently editing it (8, 9).

Optimistic concurrency techniques

Optimistic concurrency techniques have been well-studied within
the context of databases and distributed simulations, which make
the assumption that data contention between two different transac-
tions are rare, and conflicts rarely happen. These techniques are of-

1.

2.

3.

ten used through web user interfaces, as the stateless nature of HTTP
makes it difficult for locks to be used, since a user can simply leave
a web page at any time without notifying the application that they
have cancelled their transaction.

The simplest form of optimistic concurrency control commits a
transaction only when all necessary changes have been tentatively
completed, and no conflicts from other transaction have occurred.
If a conflict has occurred, a “rollback” is used to revert a data object
back to a previous, non-conflicted state, and the transaction which
attempted to commit is annulled. This guarantees that our data is
always valid and consistent, though this simple form of optimistic
concurrency will not be successful in areas where many conflicting
operations may occur. The lessened overhead due to locks being un-
necessary, however, can lead to greater throughput if the number of
conflicts is few.

However, for collaborative editing systems, conflicts occur often,
making the simple optimistic concurrency technique infeasible. In
later sections, we will discuss the modifications that operational
transformation makes to the simple optimistic concurrency tech-
nique that make rollbacks unnecessary for resolving conflicts.

Consistency models

Consistency models define the rules that determine what data each
client can see in memory, when a particular set of operations have
been performed by different clients. An example of when an incon-
sistency can arise is when one client writes to its own local copy of
data in a distributed data store, but has not yet propagated those
changes over to the other clients. If those other clients wish to read
or write to that data, then they may be using an older version of the
data that has not taken into account the other client’s modifica-
tions.

For collaborative editing systems, several consistency models have
been defined to formally verify the properties that clients must sup-
port to successfully resolve conflicts in the local copies of their docu-
ments. We discuss one of the more commonly referenced models
by Sun et al. (12), which suggests that consistency in a cooperative
editing system be defined by three properties based on each of the
operations (discrete transactions submitted by each client):

Convergence: When the same set of operations has been ex-
ecuted at each site, then the copies of the document are also
identical.

Causality preservation: Given two operations OA and OB if OA →
OB (OA causally occurred before OB), then OA is executed before OB
at each site.

1.

2.

McGill Science Undergraduate Research Journal - msurj.mcgill.ca��

operational transformation in cooperative software systems

Intention preservation: For every operation O, the intention
of O at the initial site where O is initially submitted will be iden-
tical to executing O at all other sites. The intention of an opera-
tion O is defined as the resulting document which is achieved by
applying O on the document state from which O was generated.

The convergence property guarantees that the document will be
correct at the end of any particular editing time period, while the
causality preservation property guarantees that the document will
be correct at any point during editing. The intention preservation
property is similar to the convergence property, but additionally
deals with the situation where operations are submitted from two
different initial document states. This property is often the most dif-
ficult to achieve, and often requires a submitted operation by one
client to be modified once received by another.

operational transformation

Operational transformation (OT) is a class of optimistic concurrency
algorithms and data structures that are well-suited to satisfying the
three properties of the consistency model of collaborative editing
systems discussed above. The OT mechanism can be divided into the
models that represent the data and its changes, and the algorithms
that are used to ensure the correctness of the system (1, 3, 4, 5).

Basic example

The basic operational transformation technique (inclusion transfor-
mation) can best be illustrated by a simple example. Say we are given
a text document, containing the sentence:

“operational transformation is very fun”

Now, two users, A and B, each simultaneously submit an operation on
this document. For the purpose of demonstration, an operation has
the signature Operation(position, string), where “position” represents
the index of a word in the sentence, and “string” is the target string
we want to operate on:

User A submits the operation OA, Insert(0, ‘using’), inserting the
word “using” at the beginning of the sentence.

User B submits the operation OB, Delete(4, ‘very’), deleting the
word “very” from the 4th word of the sentence.

If we perform these operations in the order above without trans-
forming them, we get the following result:

“using operational transformation very fun”

As the second operation deletes the 4th word, which accidentally

3.

1.

2.

deletes “is” instead of “very”. Instead, we need to transform the po-
sitional parameter of OB by one in order to obtain the correct result,
which our OT transformation algorithm can calculate and perform,
giving us Delete(5, ‘very’) instead. This gives us the correct result:

“using operational transformation is fun”

Data models

Data models in OT are the representations of the data in a particu-
lar collaborative session. A data model can represent a document, a
spreadsheet, a drawing, or any other object that different clients can
collaboratively operate on. The most basic OT data model is that of a
linear space in memory, such as that of a single string (1).

Recent developments in OT have allowed the development of more
complex OT data models, such as those involving rich-text editing
with markup or an advanced application state represented in JSON
(JavaScript Object Notation). However, as the data models used in OT
become more complex, so do the models that are necessary to repre-
sent a particular operation on the data.

Operation models

An operation is the fundamental block of the OT mechanism, and in
the simplest OT data model, an operation is simply an insertion or
deletion of a single character in memory. As well, more advanced
operations can be created from combining insertions and deletions,
such as a substitution operation (a combination of an insertion and
deletion operation) (10, 11).

For advanced data models that may use more than a linear space in
memory, we often find more complex operations such as moving data
between memory addresses. For example, OT word processors can
add operations to start and close annotation boundaries to represent
markup tags, and OT JSON structures can have edit operations on
particular lookup paths of a JSON object.

Past research attempted to generalize OT data and operation models,
and to only allow insertion, deletion, and substitution operations on
the data. However, for most modern OT implementations, applica-
tion-specific data and operation models are used. These also require
operation transformation functions to maintain the intention pres-
ervation property, one for each pair of operations, as each type of op-
eration must be able to be modified by the OT control algorithm rela-
tive to each other operation type. Thus, for N application-specific
operations, N x N transformation functions are required for OT (13).

Operation composition

For each client in the collaborative system, each client must perform
three different activities (12):

Volume � - Issue � - March �0�� ��

operational transformation in cooperative software systems

Operation generation: an operation is specified by the user,
and broadcast to all of the other clients.

Operation reception: an operation request is received from
another site.

Operation execution: an operation request is executed at the
site.

From these activities, we have two major sets of algorithms that han-
dle conflict resolution for the system: the low-level operation trans-
formation algorithms, and the high-level control (or integration)
algorithms. The control algorithms handle the operation models
at generation and reception, by generating a set of corresponding
transformation algorithms, which then transform the target opera-
tion model before executing it at the received site (6).

We will discuss the specific actions taken during each of the activity
phases when we compare the different control algorithms possible
in OT.

Operation transformation

Operation transformation relies on satisfying several properties that
ensure that the system is correct at each point. These are lower-lev-
el properties than the consistency model described previously, but
not all properties are satisfied by each control algorithm, and where
these properties are ensured may differ between each one. These
transformation properties are often divided up into two different
types: convergence properties and inverse properties (1, 2).

If an OT system is to support particular functionality, then it must be
able to support certain transformation properties. For group editing
and consistency maintenance, the system must support a transfor-
mation function known as Inclusion Transformation (IT). For group
undo, where the effect of a previously executed operation is un-done
at all sites, and all operations executed after it are all re-transformed,
the system must support another transformation function known as
Exclusion Transformation (ET).

Transformation functions

As mentioned before, the two base transformation functions that
generate all other transformation functions are (11):

Inclusion Transformation [IT(OA, OB)]: transforms operation OA
against another operation OB in such a way that the impact of OB
is effectively included.

Exclusion Transformation [ET(OA, OB)]: transforms operation OA
against another operation OB in such a way that the impact of OB
is effectively excluded.

1.

2.

3.

1.

2.

As previously mentioned, these transformation functions are gener-
ated for each pair of operations in the application space.

The generated transformation functions are basically generated such
that the position in which the operation is applied is transformed
by an offset relative to the other operation. For example, one of the
most basic inclusion transformations between two insert operations
can be represented as follows.

For an insert function with signature insert(p, c, s) where:

p = position of the character to be inserted

c = character to insert

s = site priority of the client

Then, the transformation function is the algorithm:

Algorithm 1 - Inclusion transform with two inserts
if (p1 < p2) then
 return insert(p1, c1, s1)
else if (p1 == p2) and (s1 < s2) then
 return insert(p1, c1, s1)
else
 return insert(p1 + 1, c1, s1)
end if

Thus, depending on the priority and insertion location of the opera-
tion, we can transform the resulting operation as needed.

Transformation properties

Convergence properties must generally be satisfied by all control al-
gorithms, as part of the convergence guarantee in the consistency
model. There are generally two convergence properties, known as
CP1 and CP2 (8, 9):

CP1: Given a state S, and two operations Oa and Ob:

If O′a = IT(Oa, Ob) and O′b = IT(Ob, Oa)
Then: S ○ Oa ○ O′b = S ○ Ob ○ Oa

CP2: Given a state S, and three operations O, Oa, and Ob:

If O′a = IT(Oa, Ob) and O′b = IT(Ob, Oa)
Then: IT(IT(O, Oa), O′b) = IT(IT(O, Ob), O’a)

Similarly, there are three inverse properties that need to be satis-
fied to support the “group undo” operation. This is not a part of the
consistency model above, but is a commonly implemented operation
in practice (8, 9).

•

•

•

1.

2.

McGill Science Undergraduate Research Journal - msurj.mcgill.ca��

operational transformation in cooperative software systems

IP1: Given a state S, and sequence of operations O ○ O:

S ○ O ○ O = S

IP2: Given any operation O, and a pair of operations Ox and Ox:

IT(IT(O, Ox), Ox) = IT(O, I) = 0

IP3: Given a state S, and two operations Oa and Ob:

If: O′a = IT(O, Ob), and
 O′b = IT(Ob, Oa), and
 Oa

′ = IT(Oa, O’b)
Then: Oa

′= O′a
Or: IT(Oa, O′b) = IT(Oa, Ob)

Control (integration) algorithms

The OT control algorithm is the main high-level algorithm govern-
ing the collaboration functions that are available to the system. This
algorithm controls the time/space complexity of the system, handles
ordering of the operations by how timestamps are applied, and proc-
esses the incoming operations into the modified transformed opera-
tions (10, 12).

Most OT systems, by design, are peer-to-peer distributed systems,
but modifying the control algorithm can also determine whether the
system can also be centralized, which is important when adapting an
OT system over the HTTP protocol.

Comparison of control algorithms

We now compare several implementations of OT control algorithms,
from ones that are historically relevant in literature to modern day
OT control algorithms that are used over HTTP.

dOPT (GROVE)

dOPT, used in the GROVE groupware outline editor program, is one of
the earliest concurrency control algorithms for operational transfor-
mation (1). It uses a transformation matrix to handle conflict resolu-
tion, where for m operations, there is an m x m matrix of the inclusive
transformation resultant functions, for each pair of operations.

Timestamps for each client are handled by a vector timestamp, where
a state vector si for a client Ci will have at position j, the number of
operations known to have been executed by client Cj.

A request queue, Qi, is used to queue up the requests that have been
generated or received, and are waiting to be executed. Requests are
handled in the form<j, s, o, p> where:

1.

2.

3.

j = the site that requested the operation

s = the vector timestamp for the requested site

o = the operation to be performed

p = the priority of the operation

Then, for the three activities (generation, reception, execution),
dOPT performs the following:

Algorithm 2 - Generate Operations
receive operation O from the user
calculate the priority p of O
append request < i, s, o, p > to Qi

multicast < i, s, o, p > to the other clients

Algorithm 3 - Receive Operations
receive < j, s, o, p > from the network
append request < j, s, o, p > to Qi

Algorithm 4 - Execute Operations
for each request in Qi where sj ≤ si do
 remove request < j , sj , oj , pj > from Qi

 if (sj < si) then
 < k , sk , ok , pk > = most recent log entry
 where sk ≤ sj (or ∅ otherwise)
 while < k , sk , ok , pk > ≠ ∅; and oj ≠ ∅; do
 if part k of sj is ≤ part k of sk then
 oj = transform(oj , ok , pj , pk)
 end if
 < k , sk , ok , pk > = next log entry
 (or ∅ otherwise)
 end while
 end if
 end for
 perform operation o on i’s data model
 add request to history log
increment jth component of si by 1

Although dOPT is simple and satisfies many of the correctness prop-
erties, a scenario was found where dOPT could not always ensure
convergence, when remote concurrent requests with similar opera-
tions were transmitted from two different sites.

Further research later helped to solve the problem, by using differ-
ent data structures for the timestamp and conflict resolution (as in
the Jupiter algorithm), or by transforming the log entries themselves
whenever they are used to transform an update.

•

•

•

•

Volume � - Issue � - March �0�� ��

operational transformation in cooperative software systems

Jupiter

Jupiter, a multi-user remote collaboration virtual world developed at
Xerox PARC by Nichols et al., addressed some of the issues found in
dOPT (7). One of the major changes in Jupiter was to have a central-
ized coordination server that uses a change propagation algorithm to
keep the clients updated and in check.

The optimistic concurrency techniques are used in the individual cli-
ent-server links, where the synchronization algorithm in the indi-
vidual client-server links is very similar to the dOPT algorithm.

The major changes in Jupiter, in comparison with dOPT, is that in-
stead of a transformation matrix, Jupiter uses a function called xform,
which takes a pair of client and server operation requests, and trans-
forms them as a new pair of operations that lead the client and server
operations to the same final state.

The xform technique is successful while the client and server are in
the same starting state, but if the client and server diverge too much,
then the operation must look back into its past history to properly
calculate the converging operations. This is often done by keeping
track of operation revision history, but not directly transforming
saved messages, like dOPT does, which causes the incorrect scenario.
Instead, Jupiter calculates past converging operations, even if it does
not apply them, in order to generate the correct recent transformed
operation.

Google Wave OT

Google Wave OT, the algorithm behind Google Docs and the former
Google Wave product, was a modification on top of the Jupiter algo-
rithm (14). The main changes to the Jupiter control algorithm are
mainly in the client/server communication protocol, as well as opti-
mizing the transformation functions for batch updates.

Instead of sending client operations to the server whenever new op-
erations are requested, the Google Wave OT client must wait for a
server response before sending any more operations. In the mean-
time, the operations are composed together into a single buffer, and
then sent together once the server has processed the last batch of
operations and converged.

This technique serves two major purposes. First, as the server ac-
knowledges the client before any new operations proceed, the cli-
ent is capable of predicting the operation path that the server will
take, and thus always send operations to the server that are always
on the path. This simplifies the server implementation significantly,
as the server only needs to keep track of its own history. Instead of
taking a quadratic O(h2) space for history on every possible path, it
only takes up a linear O(h2) space on the server for history, where h is
the number of previous operations (and possible causal operations)

required to calculate the correct OT path.

Finally, the transformation algorithm handles operations in streams,
rather than as single discrete operations. These operation sequence
streams are guaranteed to be in order, as well as linear, so the stream-
ing transformations can be performed in linear time.

ABT (TIPS)

A more modern protocol for OT is based on the admissibility-based
transformation (ABT) framework, which has been formally verified
for correctness (8,10). TIPS, an implementation of ABT, builds on top
of existing HTTP protocols, and also uses a centralized server.

Clients in TIPS are able to join or leave a session at any time, and the
clients also independently decide to sync with the server. As with
Google Wave OT, operations are buffered and synchronized with the
server only at some particular server-determined interval. This is
useful, as it can be easily adapted to JavaScript-based long polling
methods, which are the traditional method of maintaining an open
connection over the web.

Once the server has asked all of the clients to synchronize, each client
that has responded will have their operations applied to an n-way
merge algorithm, which will create a sequential set of operations as
output. The clients receive this sequential set of operations in an-
other interval, which is adapted by them through another algorithm,
ITSQ, which performs the inclusion transformation step that updates
the document correctly.

The benefit of TIPS over existing protocols is that it is more capable
of allowing clients to dynamically enter and exit a particular OT ses-
sion, as well as being more robust when dealing with client or net-
work failures.

Summary

Operational transform is still a rapidly developing technology, with
many particular algorithms and system implementations that are
well-suited for particular tasks. These algorithms can differ in the
consistency guarantees they support, as well as functionality, and the
most useful algorithm often depends on the specific application that
is being built. Both the high-level design of the OT control algorithm,
as well as the low-level design of the OT data and operation models is
significant in determining which systems are the most practical.

Real-time collaborative applications are slowly becoming some of the
more widely used applications in business environments, and with
further development with Internet-accessible mobile devices, these
applications will continue to flourish. Operational transformation
will continue to be a significant research topic in the coming years as

McGill Science Undergraduate Research Journal - msurj.mcgill.ca��

operational transformation in cooperative software systems

networked cooperation becomes more widely used.

Acknowledgements

I would like to thank Eric Ferraiuolo of Yahoo! for assisting me in
learning about the field, and for helping to provide resources and
technical advice.

References

[1] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware
systems. In ACM SIGMOD89 Proceedings, 18(2):399407, 1989.
[2] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving
convergence, causality-preservation, and intention preservation in real-
time cooperative editing systems. ACM Transactions on Computer-
Human Interaction, 5(1):63108.
[3] R. Bentley and P. Dourish. Medium versus mechanism: Supporting
collaboration through customization. In ECSCW ‘95 Proceedings,
1995.
[4] A. H. Davis, C. Sun, and J. Lu. Generalizing operational
transformation to the standard general markup language. In ACM
CSCW’02, pp. 58 - 67, Nov. 2002.
[5] G. V. Cormack. A calculus for concurrent update. Technical Report
CS-95-06, Dept. of Computer Science, University of Waterloo,
Canada, 1995.
[6] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping. High latency,
low-bandwidth windowing in the Jupiter collaboration system. In ACM
UIST 95 Proceedings, Nov. 1995.
[7] B. Shao, D. Li, T. Lu, and N. Gu. An operational transformation
based synchronization protocol for Web 2.0 applications. In CSCW
2011, pp. 563 572, Mar. 2011.
[8] D. Li and R. Li. An approach to ensuring consistency in peer-to-peer
real-time group editors. Computer Supported Cooperative Work: The
Journal of Collaborative Computing, 17(5-6):553-611, Dec. 2008.
[9] D. Li and R. Li. An admissibility-based operational transformation
framework for collaborative editing systems. Computer Supported Co-
operative Work: The Journal of Collaborative Computing, 19:1-43,
Aug. 2009.
[10] R. Li, D. Li, and C. Sun. A Time Interval Based Consistency Control
Algorithm for Interactive Groupware Applications. In Proc. IEEE Intl
Conf. Parallel and Distributed Systems, pp. 429-436, Jul. 2004.
[11] C. Sun and C. Ellis. Operational transformation in realtime group
editors: issues, algorithms, and achievements. In Proceedings of the
ACM Conference on Computer-Supported Cooperative Work, pp.
59-68, Dec. 1998.
[12] N. Vidot, M. Cart, J. Ferrie, and M. Suleiman. Copies Convergence
in a Distributed Realtime Collaborative Environment. In Proceedings
of the ACM Conference on Computer-Supported Cooperative Work,
pp. 171-180, Dec. 2000.

[13] D.Wang, A. Mah, and S. Lassen. Google Wave operational
transform. Google Wave Federation Protocol White Papers, July
2010.

