
Volume � - Issue � - March �0�� ��

Proof-carrying authorization in distributed
systems with Beluga: a case study
Leah Weiner�*

1 School of Computer Science, McGill University, Montreal, QC

Abstract

The rising popularity of distributed systems creates a need for a secure method of message passing.
One approach to access control is accomplished through proof-carrying and proof authorization. The
requesting party must provide a proof of authorization of access while the serving party must verify the
validity of the proof. PCML5 is a programming language which enables a programmer to encode proofs and
perform proof-checking procedures more easily.

The purpose of this project is to encode PCML5 with Beluga, a new functional programming language
which supports dependent types and which has built in some of the more common procedures. Such an
implementation will provide formal guarantees regarding the language of PCML5 itself. Moreover, this
case study will aid in the understanding of the development and implementation of software specically for
programming with proofs. It will provide insight into the tools needed to allow any programmer to easily
specify and verify complex behavioral properties of programs.

RESEARCH ARTICLE

Introduction

In order to understand the research laid out in this report, one must
have a solid understanding of functional programming and of securi-
ty in distributed systems. This report begins with a brief description
of lambda calculus, a formal calculus of functions and the basis for
functional programming. Following the discussion of lambda calcu-
lus and functional programming is a section devoted to introducing
Beluga, the functional programming language in which the code for
this project was written.

Next is an introduction to distributed systems and security within
these systems. PCML5, a prototype programming language which this
project implements, is introduced together with the motivations be-
hind implementing PCML5 in Beluga.

Finally, there is a detailed description of the actual steps taken to-
wards the implementation of PCML5 in Beluga.

Lambda Calculus

The lambda calculus is a formal system intended to represent and to
calculate with functions. These functions can take other functions as
input and/or return functions as output. Such functions are called
higher-order functions. Lambda terms are the foundation of this sys-

tem and are defined as follows:

Variables: A variable is a lambda term

Lambda Abstraction: If M is a lambda term and x is a variable, then
λx.M is a lambda term

Application: If M and N are lambda terms, then M N is a lambda
term

The lambda term λx.M represents the function f(x) = M, where M may
or may not be dependent on the variable x. The identity function for
example is represented as λx.x. Observe that variable names are un-
important. λx.x and λy.y are equivalent functions. This equivalence is
known in lambda calculus as alpha-equivalence.

Binding

Consider the lambda term λx.M. If x occurs in the expression M, then
x is said to be bound to M. A variable that is not bound by a lambda
abstraction is said to be free. The free variables of a lambda term can
be deduced by the following inductive rules:

Let x be a variable and let M and N be two lambda terms. Then

*Email Correspondence:
leah.d.weiner@gmail.com

McGill Science Undergraduate Research Journal - msurj.mcgill.ca��

Proof-carrying authorization in distributed systems with Beluga: a case study

FV(x) = {x}

FV(λx.M) = FV(M) \ {x}

FV(M N) = FV(M) ∪ FV(N)

where FV(M) denotes the free variables of the lambda term M.

Substitution

In lambda calculus, substitution is used to mimic function applica-
tion. Consider the two lambda terms λx.M and N, and application is
represented on paper as M N. During this application, every free oc-
currence of the variable called “x” (the variable that is bound to M)
which occurs in the body of M, is being substituted by the lambda
term N. We write [N/x]M to represent this substitution.

Capture-avoiding substitution

When performing substitutions as described above, certain precau-
tions must be taken. In order to properly perform the application M N,
only free variables should be substituted (bound variables should not
be touched). However, in cases when variable names are not distinct,
performing substitution may result in the binding of a variable which
was previously free. An example of this phenomenon, called name
capture, is described below. One way to avoid name capture during
substitution is to rename the free variables (the variables affected by
substitution) in the relevant terms uniquely. This safe substitution is
known as capture-avoiding substitution.

To see the importance of renaming, consider the following example:
In the expression λx.xz, z is the only free variable. However, to per-
form the substitution [x/z] λx.xz, the result, before renaming would
be λx.xx. In this way, z has been “captured”, its distinction from the
variable x has been lost.

The correct way to perform this substitution is to first rename the
free variables. Through alpha-equivalence, λx.xz == λy.yz. Now, [x/z]
λy.yz= λy.yx, which is the intended result (7).

Functional Programming

Functional programming is a programming paradigm based on the
ideas of lambda calculus. Functional programs use function evalua-
tion as the basis for computation. The better known imperative pro-
gramming languages, such as Java or C, rely on mutating data and
changing the state of the machine rather than function evaluation.

One consequence of functional programming’s reliance on function
evaluation is its extensive use of recursion. The more familiar im-
perative programs rely more heavily on iteration. Writing code in a

recursive fashion generally takes less space than iterative code, al-
lowing functional programs to have code which is cleaner and easier
to read.

Functional programs also avoid side effects. That is, observable
changes such as writing data to disk or changing variable names are
bypassed during computation. Conversely, imperative programs do
use side effects (also referred to as referential opaqueness), so the
output of imperative code can change depending on the current state
of the system. Functional programs, which avoid this dependence on
the current state of the machine to determine the output, do not out-
put results dependent on the state of the machine and are therefore
more predictable and thus easier to reason about.

Lastly, functional programming has the property that each expres-
sion has a single value (referential transparency) (10). The use of
referential transparency ensures that each expression has a unique
value, eliminating confusion and giving the programmer a greater
sense of control.

Recall that substitution of lambda terms must be capture-avoiding.
Issues such as name capture also arise when performing function
application in functional programs. Functional programs then must
be able to generate fresh variable names, rename variables and per-
form capture-avoiding substitution appropriately. Although these
procedures are extremely common in functional programming, most
functional programming languages require these procedures to be
manually implemented.

Beluga

Beluga is a newly developed pure functional programming language
which provides a novel programming and proof environment. The
motivation behind the development of Beluga was the desire to pro-
vide an environment in which to set up formal systems and proofs
and in which the aforementioned lack of support for the common
operations in functional programming languages (capture-avoiding
substitution, renaming, fresh name generation) is remedied.(4).

While Beluga successfully achieves automatic support for these op-
erations, it does not include support for input and output operations,
references or exceptions.

Types are the foundational tools used to build programs. Built-in
types common to many programming languages include integer,
character or double. Beluga does not have any predefined data types
but it does support dependent types, or types which depend on other
variables.

Because Beluga does not have a predefined type system, a Beluga pro-
grammer must declare his own types. For example, the integer type

Volume � - Issue � - March �0�� ��

Proof-carrying authorization in distributed systems with Beluga: a case study

in Beluga can be initiated with the following piece of code:

nat : type.
zero : nat.
succ : nat -> nat.

The first line declares that natural numbers (called nat) are a type
and the second line declares that zero is a natural number. The third
line demonstrates how one can achieve natural numbers other than
zero. This declared successor type, succ, is a dependent type. It’s
value is dependent on the value of the inputted nat. In the case of
successor, succ N = N + 1 for any natural number N.

To get a better understanding of what code looks like in Beluga, we
provide an example of the simple addition function below:

rec add: [. nat] -> [. nat] -> [. nat] =
fn x => fn y =>
 case x of
 | [. zero] => y
 | [. succ N] =>
 let [. R] = add [. N] y in [. succ R]
 ;

In line one, the keyword rec announces the start of a new (recursive)
function. The name of this function is “add” and it takes in two vari-
ables of type nat and returns a variable of type nat.

Line two gives the input nat values arbitrarily chosen variable names.
In this example, the first inputted natural number is called “x” and
the second is called “y”.

In the third line of this function, the programmer declares that there
will be a case by case analysis on the value of “x”, the first input to
the add function. As x is a natural number, it is either equal to zero,
or it is of the form succ N, where N is a natural number. It is impor-
tant to notice that a natural number of the form succ N cannot equal
zero.

The next line deals with the case when x equals zero. In this case, the
function is told to return y. This makes sense, as 0 + y = y. This case
acts as the base case in this recursive function.

The fifth line deals with the case when x is of the form succ N. It
declares R to be a new variable equal to N + y. The successor of N + y
is then returned as the final output to the function (after more recur-
sive calls). To check the validity of this, notice that succ (N + y) = N +
y + 1 and that x = succ N = N + 1. Thus, x + y = succ N + y = N + 1 + y = N
+ 1 + y, as desired.

Distributed systems

A distributed system is a set of computers which communicate
through a network. Although each machine is independent, they col-
lectively appear to an outsider (user) as one coherent system. The
use of a distributed system is motivated by a system’s reliability, per-
formance and transparency.

Having a large number of machines working together clearly increas-
es the reliability of the system as a whole. If one part fails, another is
available to take over, resulting in a higher tolerance for faults. Simi-
larly, the cooperation of a series of machines leads to the better per-
formance of distributed systems when compared to a single central-
ized machine. Moreover, it is easier to share data and communicate
when using a distributed system (8).

There are some disadvantages however. Writing software for a dis-
tributed system is more challenging. This difficulty may stem from
the fact that each component of the distributed system may be writ-
ten in a different language, that consistency across the system is hard
to achieve, or that testing software in a distributed system is difficult.
Also, despite a distributed system’s higher fault tolerance, the great-
er amount of components means that more parts are prone to failure
(but, as previously stated, the failure of a single piece of the system is
less urgent). Additionally, data security is sometimes an issue (11).

Authentication and authorization

Certain information being passed along a network may be authorized
only for the eyes of certain machines. It is therefore necessary for a
distributed system to have some sort of access control. In order to
grant a machine access to some set of data, it is necessary to ensure
two things. Firstly, authentication, or certification of the identity of
the requester, must be determined. Secondly, authorization, or the de-
cision of allowing or disallowing the requester access to the desired
information, must be figured. The set of rules by which this decision
is made is called the policy (6).

There are two methods for access control. One possibility is having
a central authority. Each request must first go through this central
authority, which either approves or denies the client’s request. Upon
approval, the central authority tells the server to send the desired
information directly to the requesting machine.

Alternatively, we can use the proof-carrying authorization method of
access control wherein the middle man is cut out and the client can
send a proof of authorization of access directly to the serving party.
It is then the job of the server to verify this proof and, if applicable,
provide the requester with the desired information. Here, the burden
of proof is on the client, rather than on the server.

McGill Science Undergraduate Research Journal - msurj.mcgill.ca��

Proof-carrying authorization in distributed systems with Beluga: a case study

Systems which utilize proof-carrying authorization are both easier to
implement and more efficient. In systems that don’t use proof-carry-
ing authorization, the verifier must decide whether or not to grant
access to a requester. Programming such communications is difficult
and time-consuming. However, in the method of proof-carry authori-
zation, the requester can simply supply in its proof the reason why
it should be granted access. Thus the method of proof-carrying au-
thorization is faster and more straight-forward. While authorization
of a proof in systems which use proof-carrying authorization takes
time which is linear in the size of the proof, the verification or denial
of access of a machine is much more time-consuming (6).

How to represent proofs

In order to make use of the method of proof-carrying authorization,
it is imperative to be able to have a language which can represent
proofs and policies. Proofs need to be represented as some sort of
digital certificate. But in order for clients and servers to write and
interpret proofs correctly, the language system must be unambigu-
ous and must be easily dissected and understood by all the machines.
This is difficult due to the complexity of most policies. Each distrib-
uted system has its own policy, and within a system, each set of data
could have its own policy.

The problem of creating a language with which to encode the policy
is discussed in the next section. Once this language is established
however, implementing the language in a way that is understand-
able to a computer follows from converting each rule of the policy
into an inference rule and representing proofs rigorously as a logical
inference (6).

PCML�

The growing popularity of distributed systems in the form of web-
based services motivates the creation of a language in which policies
can be encoded and distributed programs can be expressed (9).

Avijit, Datta and Harper introduced a programming language, PCML5,
in their paper entitled Distributed Programming With Distributed Author-
ization (9). PCML5 is intended to simplify the programming of proofs
for security in a distributed system with distributed authorization. It
achieves this through its support for distributed computations, the
implementation of an authorization logic, and the ability to repre-
sent both policies and proofs (9).

An authorization logic is a formal system of logic which supports
the encoding of policies as theories. PCML5 encodes an authorization
logic by integrating the framework of the logic directly into PCML5’s
type system. For example, we can use an authorization logic to prove
progress and preservation. The proof of progress states that if m is an

expression, then either m is a value or m steps to some other expres-
sion m′. The proof of preservation states that if m is of type T and m
steps to m′ then m′ is of type T. Together, progress and preservation
ensure type safety.

Why implement PCML� in Beluga?

The successful implementation of PCML5 in Beluga provides formal
guarantees about PCML5 itself. Specifically, we can gain insight into
the theorems such as progress and preservation which together en-
sure type safety of the language. This case study will also aide in the
understanding of both the development and implementation of soft-
ware systems and programming with proofs. Implementing PCML5 in
Beluga raises awareness about possible issues that may arise during
these sorts of implementations. Moreover, we will gain insight into
the tools which are necessary to allow the average programmer to
easily specify and verify complex behavioral properties.

Why Beluga?

Beluga is not the only language which can accomplish the desired
task successfully. However, the use of Beluga is motivated by some of
the properties inherent in Beluga programs as well as by a desire to
fill some of the gaps in our knowledge of Beluga.

One advantage to using Beluga is its support for dependent types and
its lack of pre-defined types. These properties allow for a simpler im-
plementation of security procedures as defined by PCML5, as we can
simply define the types as prescribed by PCML5. PCML5 is designed to
encode authorization policies and certificates easily. Beluga’s support
for automatic capture-avoiding substitution and renaming opens the
Beluga framework to the ability to program with authorization poli-
cies and certificates, making Beluga sufficient for this project.

Moreover, this case study will aide in the understanding of some of
the more technical issues regarding this task, as it is a future goal
to implement security procedures in Beluga. A successful implemen-
tation of PCML5 in Beluga will show that security is viable and will
show simplicity of proof-carrying applications due to Beluga’s built-
in features. Upon successful implementation, we will have another
working example of Beluga code, proof that Beluga can be learned
quickly by the average programmer with no previous knowledge of
Beluga, and a simpler way in which to write security procedures in
Beluga. Although PCML5 requires common substitutions and renam-
ing, a Beluga programmer can essentially ignore these issues, thus
encode PCML5’s authorization logic more simply.

Volume � - Issue � - March �0�� ��

Proof-carrying authorization in distributed systems with Beluga: a case study

How to implement PCML� in Beluga

In order to implement PCML5 with Beluga, one must first encode the
primitive types. Beluga has no predefined data types, so this was all
done by hand. An example of a piece of the authorization logic which
PCML5 encodes is expressed as:

Kinds K ::== Wld | A1 Affirms A2

Constructors A ::== α | A1 x A2 | A1 → A2

These primitive types can be represented in Beluga as follows:

 kind : type. %type kind
 cnstc : type. %type constructor
 wld : kind.
 affirms : cnstc -> cnstc -> kind.
 alpha : cnstc.
 cross : cnstc -> cnstc -> cnstc.
 arr : cnstc -> cnstc -> cnstc

Next, I implemented the inference rules. In order to do this, we make
use of the fact that substitution and renaming is automatic in Beluga.
Dependent types in PCML5 (e.g. lam, exists, pi etc.) are thus easily
converted into Beluga. When using these functions, a Beluga pro-
grammer need not think twice.

An example of an inference rule expressed in PCML5’s logic is:

The statements above the horizontal line are the assumptions, while
the statement below the horizontal line is the conclusion following
the assumption of the statements above the line. This inference rule
states that if m is of type A1 × A2 (and thus m = (m1, m2)) in the world
w then the second element (second projection) of m is of type A2 in
world w.

To translate this inference rule into Beluga’s language, we first must
have previously declared the following types:

 cnstc : type.
 term : type.
 world : term.
 cross : cnstc -> cnstc -> cnstc.
 scnd : term -> term.

We then implement the “sentence structure” with which Beluga will
represent m : A @ w:

 is_inwld : term -> cnstc -> cnstc -> type.

Finally, we can represent the inference rule itself in Beluga as:

 isinwld_scd : is_inwld M (cross A_1 A_2) W ->
 is_inwld (scd M) A_2 W.

Lastly, we can make use of our previously implemented primitive
types and inference rules to implement the main theorems of the
paper. Proving the theorems involves a case by case analysis on the
derivation of some statement in the hypothesis of the theorem.

One theorem that is proven is the progress theorem. In the PCML5
paper, the statement of the theorem is written as:

If m : A@w then either mvalA OR ∃m′, A′, such that m ; A → w m′ ; A′.

In plain English, this translates to: if m is of type A in world w then
either m is a value under the assumptions A or there is some m′ and
A′ such that m evaluated under A in the world w steps to some expres-
sion m′ under A′.

In order to encode this statement into Beluga, we must first some-
how encode this “either” in the statement. We can do this by creating
a type called result, which encodes that the result is either a value or
an evaluation (world shift):

 result : term -> type.
 r_val : {W:cnstc}{AA:active_prin} is_val W M AA
 -> result M.
 r_ws : is_ws M AA W M’ AA’ -> result M.

With this extra tool, we can now state the theorem in Beluga by fol-
lowing the rules for function declaration:

 schema apctx = active_prin ;
 rec thmc4 :
 {AA:[.active_prin]} [. is_inwld M A W] ->
 [. result M] =
 mlam AA => fn d => case d of

In the proof of this theorem, we proceed by a case by case analysis on
the derivation of is_inwld M A W .
In the appendix of Avijit, Datta and Harper’s paper, each possible der-
ivation is followed by a systematic reasoning as to why the theorem
would hold true under this derivation of the hypothesis.

For example, consider the derivation of is_inwld M A W , written
in the appendix as:

McGill Science Undergraduate Research Journal - msurj.mcgill.ca�0

Proof-carrying authorization in distributed systems with Beluga: a case study

We can represent this in Beluga as:

 | [. isinwld_scd D] => let [. R] = thmc4 [.AA] [. D] in
 (case [. R] of
 | [. r_ws T] => [. r_ws (isws_scd T)]
 | [. r_val W AA’ V] =>
 (case [. V] of
 | [. isval_xV V1 V2] => [. r_ws (isws_pairscd V)]
))

The Lemma C.5 that is referred to in the derivation analysis is a weak-
ening lemma. In Beluga, it is not necessary to implement the lemma
itself, and it can be implemented directly into the function (as can
be seen above in the case of rval). Moreover, it is not necessary to ex-
plicitly mention the impossible cases of [. V], the value. There is only
one possible way the statement can be true under the assumptions of
that case and so only that case needs to be expressed.

Moreover, we do not need to represent the contexts. They are either
constant or can be easily included directly in the statement. This re-
moves a lot of notation in Beluga’s implementation.

Similar translations are done for all the possible derivations.

We then continue and implement a proof of preservation in Beluga.
As described in PCML5:

This means if m is evaluated under A in world w to m′ under A′ and
m is of type m in world w then m′ is of type A in world w. This can be
implemented in Beluga using a similar method as the previous proof.
The statement of the theorem is written as follows:

 rec thmc11 : [. is_ws M AA W M’ AA’] ->
 [. is_inwld M A W] ->
 [. is_inwld M’ A W] =
 fn d => fn f => case d of

We will not review how to implement each specific case here, as it is
the same methodology as the preservation cases.

Benefits of using Beluga

Following the successful implementation of PCML5 in Beluga, it be-
comes clear that Beluga offers an advantageous environment in
which to implement PCML5 and encode proof-carrying code. The
Beluga framework leads to a comparatively concise encoding of both
the authorization logic and the theorems laid out in the PCML5 paper.
One factor leading to this concise representation is the elimination
of the need to repeatedly represent the contexts. It was unnecessary
to encode impossible or irrelevant cases, cutting down greatly on the
amount of notation.

Moreover, PCML5 required an implementation of separate lemmas for
inversion, weakening, canonical forms, substitution or renaming. In
Beluga however, these are either automatic or could be encoded di-
rectly in the function.

To get a more concrete idea of how much more concise PCML5 is
when implemented in Beluga, consider the exact amount of code
needed. There is no way to save space when implementing the primi-
tive types of PCML5’s authorization logic in Beluga; each primitive
type takes one line to encode. However, since in most cases we do
not need to encode the contexts, we save a lot of symbolism when
using Beluga to write out the inference rules and the theorems. The
inference rules each take one line in Beluga. Due to the fact that we
do not need to implement supplementary lemmas in order to suc-
cessfully prove the progress and preservation theorems in Beluga,

Volume � - Issue � - March �0�� ��

Proof-carrying authorization in distributed systems with Beluga: a case study

these full proofs of these theorems take up less space on the page.
Moreover, had we used another functional programming language to
implement PCML5’s authorization logic, we would have had to imple-
ment these lemmas since the operations are not automatic in most
other programming languages.

To get a more concrete understanding of the amount of space saved,
consider that the eight pages it took the appendix of the paper to
fully prove the progress and preservation theorems that took Beluga
a mere 250 lines of code (approximately five pages).

Conclusions

The successful implementation of PCML5 in Beluga further motivates
the continuing development of Beluga. The successful implemen-
tation of PCML5 in Beluga demonstrates that using Beluga to code
proof-carrying authorization in a distributed system can be quite
simple. Beluga allows for code to be concise, and its framework is
compatible with proof-carrying code. Moreover, Beluga is an acces-
sible and useful language that can be eventually used universally.
Lastly, this project offers insight into the development of proof-car-
rying authorization in distributed systems.

References

[1] A. Felty and B. Pientka Reasoning with Higher-Order Abstract
Syntax and Context: A Comparison. In First International Confer-
ence on Interactive Theorem Proving (ITP ’10), Lecture Notes in
Computer Science (LNCS), vol 6172, pages 227-242, Springer, 2010.
[2] A. W. Appel and E. W. Felten. Proof-Carrying Authentication. In
CSS ’99: Proceedings of the 6th ACM conference on Computer and
communications security, pages 52-52, Aug 1999.
[3] B. Pientka. “A Beginner’s Guide to Programming in Beluga.”
McGill University. Sept 2010 <http://www.cs.mcgill.ca/~cs523/hand-
outs/intro-beluga.pdf>
[4] Brigitte Pientka. Beluga: programming with dependent types,
contextual data and contexts. In 10th International Symposium on
Functional and Logic Programming (FLOPS ’10). Lecture Notes in
Computer Science (LNCS), vol 6009, pages 1-12, Springer, 2010.
[5] Deepak Garg and Frank Pfennig. Non-Interference in Construc-
tive Authorization Logic. In Proceedings of the 19th IEEE Computer
Security Foundations Workshop (CSFW 19), pages 283-296, 2006.
[6] Deepak Garg. An Introduction to Proof-Carrying Authorization.
Nov 2007.
[7] Henrik Nilsson. “Untyped λ-calculus: Operational Semantics and
Reduction Orders”. Lecture 11. University of Nottingham. July 2012.
<http://www.cs.nott.ac.uk/~nhn/G54FOP/LectureNotes/lecture11-
9up.pdf>.

[8] Isup Lee. “Introduction to Distributed Systems”. Univeristy of
Pennsylvania. 2007. <http://www.cis.upenn.edu/~lee/07cis505/Lec/
lec-ch1-DistSys-v4.pdf>
[9] Kumar Avijit, Anupam Datta, and Robert Harper. Distributed
Systems With Distributed Authorization. In TLDI ’10: Proceedings of
the 5th ACM SIGPLAN workshop on Types in language design and
implementation, pages 27-38, ACM, 2010
[10] Lujo Bauer, Michael A. Schneider, and Edward W. Felten. A
Proof-Carrying Authorization System. Technical Report TR-638-01,
Princeton University, April 2001.
[11] Petru Eles. “Distributed Systems”. Linkoping University. <http://
www.ida.liu.se/~TDDB37/lecture-notes/lect1.frm.pdf>
[12] Stephen A. Edwards. “Functional Programming and the Lamb-
da Calculus”. Columbia University. 2008. <http://www.cs.columbia.
edu/~sedwards/classes/2010/w4115-spring/functional.pdf>

