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Bayesian Models for Phylogenetic trees

ABStrACt

introduction: inferring genetic ancestry of different species is a current challenge in phylogenet-
ics because of the immense raw biological data to be analyzed. computational techniques are 
necessary in order to parse and analyze all of such data in an efficient but accurate way, with 
many algorithms based on statistical principles designed to provide a best estimate of a phyloge-
netic topology. Methods: in this study, we analyzed a class of algorithms known as markov chain 
monte carlo (mcmc) algorithms, which uses bayesian statistics on a biological model, and simu-
lates the most likely evolutionary history through continuous random sampling. we combined 
this method with a python-based implementation on both artificially generated and actual sets of 
genetic data from the ucsc genome browser. results and discussion: we observe that mcmc 
methods provide a strong alternative to the more computationally intense likelihood algorithms 
and statistically weaker parsimony algorithms.  given enough time, the mcmc algorithms will 
generate a phylogenetic tree that eventually converges to the most probable configuration.

*Corresponding author:

clarence.leung@mail.mcgill.ca

Received: 2 January 2012

Revised: 2 March 2012

Clarence Leung*1

1McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada

intrOdUCtiOn

geneticS and phylogeny
The rise of genetics in the past few decades has led to a significant 
shift in the techniques and primary focuses of biological research. 
Quantitative data analysis has begun to replace the purely obser-
vational techniques used in the past, and new fields of study have 
sprouted in response to considerable data that we have yet to ana-
lyze and apply (11).

Phylogenetics, the study of the evolutionary relatedness between 
organisms, has been one such field bombarded by an influx of raw 
data.  From the study of taxonomy, the identification and classifi-
cation of organisms, phylogenetics research has merged quanti-
tative data and gene inheritance theories into the development of 
past evolutionary inferences. The techniques used in phylogenetic 
analysis range from computing evolutionary distances between 
two individual organisms, to estimating divergence times between 
species, to even analyzing diversification rates of all life at the 
macroscopic level (6).
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The phylogenetic tree is an intuitive way of representing these 
phylogenetic relationships, and has long been used by researchers 
to model the unique genetic characteristics of each individual species. 
Topologically, a phylogenetic tree is composed of two groups of 
sub-structures, nodes and branches. The nodes of a phylogenetic 
tree can represent any unit of phylogeny, ranging from a single 
gene to an entire taxon of organisms (3, 8). Similarly, the branches 
of a tree can represent any method of describing the differences 
between any two units, at the genetic level (such as the Hamming 
distance between any two DNA sequences) or even time (10). 
Though phylogenetic trees have historically been used to model 
taxonomy because they are similar to the actual evolutionary patterns 
of adaptive radiation and lineage splitting, phylogenetic trees in 
today’s studies have been used as more dynamic models to dem-
onstrate the specific processes, such as nucleotide mutation, that 
lead to those macroscopic changes (2).

In recent years, phylogenetic inferences have begun to rely 
increasingly on large amounts of molecular data sets, such as 
the sequences of DNA or amino acids because of the growing 
ease and reduced costs of obtaining sequence data due to more 
efficient sequencing techniques (5). As more and more quanti-
tative data is gathered in various fields, phylogeneticists must 
analyze and process that data to modify their predictions of 
evolutionary relationships.

coMputational phylogeneticS
Computational methods are necessary to investigate these 
sequence datasets, as their sheer size make manual data analysis 
nearly impossible. Algorithmic methods of solving phylogenetic 
problems have been developed to solve these problems in a feasible 
computational time and compute significant results including 
phylogenetic tree inferences. Though there are many types 
of algorithms used in phylogenetics, they all rely on the use of 
computational statistics in order to generate predictions of the 
evolutionary past, given the molecular sequences of modern day 
organisms.

Algorithms in phylogenetic tree inference will take as input 
molecular sequences of modern-day organisms, and set them as 
the external nodes of the tree, or the nodes that do not have child 
nodes below it. Through different calculation methods, these 
algorithms generate statistical phylogenetic predictions of the de-
sired genetic information of the parent nodes and the branches 
between each node, working up through the tree until the root is 
reached. The final output of the algorithm is a completed phyloge-
netic tree, with the most likely inferences for the node and branch 
parameters solved.  These algorithms can be divided into one of 
three main types, classified by their method of calculation (2, 6, 9).

Fig 1. A sample DNA dataset represented in digital format.  Source: Wikimedia Commons

Fig 2. A rooted phylogenetic tree for sample rRNA genes, showing the 
branches Bacteria, Archaea, and Eucaryote.  Source: Wikimedia Commons
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maXimum parsimony:
Using this class of algorithms, the most likely phylogenetic tree is 
the one that has the least evolutionary change that results in the 
observed data. Each sub-tree of the phylogenetic tree is scored by 
a scoring mechanism, which is determined by the number of steps 
required to change from a parent node to a child node, for each 
node in the sub-tree. Th ese algorithms are simple, but often in-
consistent, as adding more data to a calculated tree will sometimes 
lead to a completely diff erent tree, rather than converging on the 
same result.

maXimum liKeliHood:
Under this class of algorithms, the sequence data of a specific 
sub-tree is scored, and the scoring function works up the tree. 
However, instead of scoring with a function that calculates the 
least amount of change, the transition probability of that character 
changing at any point in the sub-tree is calculated by a spe-
cifi c probability model based on the character of each sequence, 
such as a single nucleotide or amino acid. Scoring is based on the 
combined likelihoods determined by the function, and produces a 
much more likely tree than parsimony. However, these algorithms 
tend to be extremely computationally intensive, especially as the 
number of parameters accepted by the probability model increases.

bayesian inFerence:
Under this class of algorithms, the same character transition 
probability model is used, as in maximum likelihood. However, 
rather than determining the tree heuristically with a scoring 
function, as in maximum likelihood, Bayesian algorithms run 
continuous simulations of generating evolutionary trees through 
Markov chain Monte Carlo (MCMC) algorithms. These 
trees are randomly generated with probability based on a given 
density, and are based upon Bayes' theorem, which determines the 
conditional probability of a specifi c tree given existing data. Th ese 
algorithms are faster and more effi  cient than other algorithms, and 
are able to accept many different parameters while generating 
converging trees. 

MarKov chain Monte carlo algorithMS
We want to calculate the probability of a specifi c tree given the 
current data. By Bayes' theorem, we note this as:

Where P(T|D) represents the probability of the tree, given the 
data, P(T) represents the overall probability of the tree, and 
P(D|T)/P(D) the effect of T on the probability of D. In 
Bayesian inference, these are the posterior distribution, the prior 
distribution, and the likelihood, respectively.  Th ese probabilities 
are simple to calculate with discrete probabilities, but diffi  cult to 

calculate with biological probability models, which require multi-
dimensional integrals that can combine both continuous and 
discrete calculations. 

Instead of directly sampling from the complex distribution, A 
possible solution is to construct a Markov chain, a chain system 
that  transitions from one state to another while satisfying the 
Markov property, where the probability of the next state of the 
system is dependent only on the current state of the system. 
Formally, we defi ne a Markov chain as:

Where all of the possible probabilities of the Markov chain {x1, x2, 
… , xn} are known as its space.

To sample from a complex distribution, a Markov chain of probabil-
ity distributions can be created such that its equilibrium state, where 
the Markov chain converges to some steady state, will be equivalent 
to that complex distribution. Th us, the correctness of the MCMC 
sampler will improve after each iteration of the Markov chain, and 
the probability distribution will be closer to the actual distribution we 
are trying to sample. Generating the Markov chain is not diffi  cult, as 
we can start from any given distribution, and adjust it depending on 
the given density function at each iteration. 

However, determining when an MCMC sampler has converged 
is more diffi  cult because the randomness of the algorithm could 
potentially generate several states without having actually made 
any changes, but not be equivalent to the target distribution.

MetropoliS-haStingS SaMpler
A specifi c version of the MCMC sampler for probability distribu-
tions is the Metropolis-Hastings sampler, which allows sampling 
from any probability distribution if a function proportional to the 
corresponding probability density is known.  For some complex 
distribution ∏(x) and its corresponding density π(x), and some 
transition proposal distribution Q(x, y) and its density q(x, y), if we 
are currently at state x in the chain, we select a draw for a candidate 
state y from Q(x, ·) with probability α(x) given by:

Note that π (y)/π (x) is the likelihood ratio between the current 
state and the next state, and q(y,x)/q(x,y) is the ratio of the 
proposal density in two directions to adjust for density skewness.  
If the density is symmetric, then the ratio of the proposal density 
in the two directions is 1, which reduces our algorithm to only 
be dependent on the likelihood ratio, and converts it into a 

bayesian models for phylogenetic Trees
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Metropolis sampler, a subclass of the generalized Metropolis-
Hastings algorithm.

If the combined probability π(y)q(y,x)/ π(x)q(x,y) is greater than 1, 
then the draw is automatically accepted, and the Markov chain will 
now be in state y. Otherwise, we transition to state y with that prob-
ability, so there is a possibility that we reject the draw and remain in 
our current state with probability 1 – π(y)q(y,x)/ π(x)q(x,y).

BayeSian inference in phylogeneticS
In MCMC algorithms acting on phylogenetic trees, a Metropolis-
Hastings sampler can be created where π(x) will be the conditional 
density of the candidate phylogenetic tree, given the observable 
character sequences (3). Th e proposal density q(x) will modify the 
topology of the branches of the tree that has been aff ected, and 
the character sequences of any nodes of the tree that have been af-
fected. Th e density q(x) will be dependent on a character transition 
model that takes into account outside parameters that can include 
time, character transition ratios, and rates of transition (4). We 
describe an example of such a model in the following section for 
a series of nucleotide sequences where nucleotide mutation is de-
termined by the Hasegawa, Kishino, and Yano (1985) nucleotide 
transition model, and describe an implementation (8).

deSCriPtiOn OF the MOdel

nucleotide tranSition Matrix
Th e Hasegawa, Kishino, and Yano (HKY85) nucleotide transition 
model allows for the consideration of fi ve parameters: the four 
base frequencies of the possible nucleotides adenine, thymine, 
cytosine, and guanine, denoted as πA, πT, πC, πG and a transition/
transversion rate parameter κ that allows for the diff erentiation 
between the transitions of purines (A, G) and transitions of pyra-
midines (C, T).

Th is can be expressed in the rate matrix Q:

Th e transition probability for some time t and nucleotide transi-
tion I to j, Q ij(t), can then be described as:

MetropoliS-haSting on treeS

We draw a potential state for the next tree in the Markov chain 
with an algorithmic method in four steps:

1. rearrange THe local Topology
A random internal node that has both a parent and children is 
chosen, which is designated our target node T. We now rearrange 
the local topology of the node, which consists of the neighboring 
nodes C1, C2, and S, representing the fi rst child, the second child, 
and the sibling of the target node respectively. A new topology is 
chosen by randomly rearranging the positions of those nodes, and 
their subtrees as well. 

2. selecT a new TargeT Time
Using the new topology, a new time for the target is selected by 
choosing from the density:

Note that the selected time of the target node must fall between 
the time of the parent node, given by tP and the time of its 
nearest child, given by max(tC1’, tC2’), after the nodes have had their 
topology rearranged.

When calculating this time, we do not actually have to sum all 4m

diff erent nucleotide sequences when implementing the selection. 
Because the nucleotide sequences of the parents and the descen-
dants in the summation are always fi xed, we actually will only need 
to evaluate 43 = 64 total terms per iteration, which signifi cantly 
increases the algorithm’s speed.

3. selecT a new TargeT seQuence
When determining the nucleotide sequence, this density can be 
simplifi ed to a series of four-nucleotide draws, with frequencies 
dependent on a four-category multinomial distribution that is re-
calculated at each iteration. We can sample individually from a 
categorical distribution for each nucleotide in the sequence, as the 
probability of a mutation for each nucleotide is not dependent on 
any other states in the current iteration.
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4. accepTance or rejecTion oF THe candidaTe
After selecting this candidate state, the algorithm must decide 
whether or not it is accepted as the next state in the chain or rejected.

Th is is the α(x, y) as noted before in the MCMC algorithm, the 
combination of the target distribution and the proposal density.  If 
the probability of selection is greater than or equal to 1, then we 
automatically select the new state, with the new topology, time, 
and sequence. Otherwise, we will move to the new state with 
probability α, and stay at our current state (reject the candidate) 
with probability 1 – α.

eXPeriMentAl dAtA

We compared the MCMC algorithm with several known techniques 
in computational phylogenetics, as described above. An imple-
mentation of the MCMC algorithm was created in the Python 
programming language, with the NumPy and SciPy scientifi c 
computing libraries, and compared against the non-Bayesian 
algorithms found inside the PHYLIP phylogenetic inference 
package, written in C. The Python MCMC algorithm had its 
results validated with MrBayes, a generalized MCMC phyloge-
netic inference package written in R. 

Th ree alternate algorithms were chosen from the PHYLIP pack-
age to demonstrate the variety of methods available to calculate 
the most likely phylogenetic tree:

1.dnapars
A maximum parsimony algorithm based on several improve-
ments to the Fitch algorithm (1971).

2.dnapenny
A maximum parsimony algorithm using the ``branch and bound’’ 
method devised by Hendy and Penny (1982).

3.dnaml
A maximum likelihood algorithm based on an algorithm devised 
by Felsenstein (1981) and a model by Hasegawa et al. (1985).

artificially generated data
Th e algorithm was initially tested on a small artifi cially generated 
dataset obtained from the PHYLIP phylogenetic inference pack-
age.  Th is dataset is designed to test the accuracy of phylogenetic 
algorithms through simulations of nucleotide mutation starting 
from a chosen root sequence.  

Fig 3. Th e small artifi cial dataset used to test the validity of the algorithm.

Th e algorithms were capable of producing trees with similar topol-
ogies, although some tree rearrangement is required.  We repeated 
this method multiple times with several diff erent bootstrapped 
versions of the initial topology, using PHYLIP's BOOTSTRAP 
program to generate a new shuffl  ing of DNA sequences. Using 
the CONSENSE program in PHYLIP, we built a consensus tree 
for each diff erent algorithm type, with a chain of 500 trees for 
the MCMC algorithm, and 500 random trees starting from the 
bootstrapped topologies for the rest.

The ratios on the intersections of each branch represent the 
number of trees sampled that contained that specifi c ``majority'' 
sub-tree. In particular, if 0.99 is the ratio on the intersection, 
then 0.99 of all trees sampled would contain that specific sub-
tree on the branch.

ucSc genoMe BrowSer data
After validating the data with the artifi cial dataset, actual sequence 
data from the UCSC Genome Browser was used to determine the 
applicability of the MCMC algorithm on a larger dataset, based 
on experimentally-obtained sequence alignments. A 896-nucleo-
tide strand from the MT-ND4 (mitochondrially encoded NADH 
dehydrogenase 4) gene on human alignment hg19 was taken and 
compared with similar regions found in several other primate 
species such as the tarsier (with alignment tarSyr1), the gorilla 
(with alignment gorGor3), and the orangutan (with alignment 
ponAbe2).

After calculating our fi rst optimal tree, we determined the con-
sensus tree for each algorithm using the same method as before.

Th e average ratios for the subtrees of each method were 0.84 for 
maximum parsimony, 0.88 for branch and bound, 0.98 for maxi-
mum likelihood, and 0.93 for MCMC.

bayesian models for phylogenetic Trees
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Fig 4. Th e resulting consensus trees for the diff erent algorithms on the artifi cial dataset.

Fig 5. Th e resulting consensus trees for the diff erent algorithms on the UCSC Genome Browser dataset.
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diSCUSSiOn

coMpariSon with other algorithMS
The MCMC algorithm performed well with respect to accuracy and 
efficiency in each of the cases we considered, both on the artificial 
sample dataset and actual genetic data obtained from the UCSC 
Genome Browser.  However, the implementation of this specific 
algorithm was slower than established algorithms because it was 
developed in the Python programming language for rapid develop-
ment, rather than the C programming language for computational 
efficiency, as were the maximum likelihood and maximum parsimony 
algorithms.  However, in comparison with an R implementation of 
the MCMC algorithm in MRBAYES, the maximum likelihood al-
gorithm took significantly more computational power and more time 
in order to determine the final phylogenetic tree.

From the consensus tree, the algorithms based upon Bayesian statisti-
cal models (the MCMC and maximum likelihood algorithms) gen-
erated phylogenetic trees that were more similar to each other than to 
ones generated by the parsimony algorithms. This is an expected out-
come, as maximum parsimony is known to statistically deviate from 
similar but slightly different conditions. Felsenstein (1978) showed 
that maximum parsimony algorithms will often result in significantly 
different outcomes if there is a scenario under long-branch attraction 
scenarios, which tend to occur with rapidly evolving species (4). Al-
though Bayesian methods use probabilistic algorithms and will have 
more random initial phylogenetic trees, the ability for probability dis-
tributions to converge will in fact result in more stable sets of trees. 
However, these methods rely on having a correct stochastic model for 
the transition probabilities of each character (be it a nucleotide or an 
amino acid). Many parameters must be taken into consideration in 
the construction of these stochastic models, and a model with false or 
incomplete assumptions can create a chain of improper trees.

python for BioinforMaticS
The Python programming language, with scientific computing librar-
ies NumPy and SciPy, were used to implement our algorithm. Unlike 
the more typically used low-level programming languages for bio-
informatics such as C or Fortran, or those with powerful statistical 
libraries such as R, Python allowed for much more rapid development 
and prototyping of the algorithm, with many low level memory is-
sues being abstracted by the Python interpreter. NumPy and SciPy, 
however, provided fast vectorization and many probability functions, 
many of which were wrappers for existing C or Fortran functions, 
which overcame some of the expected trade-off of algorithm speed 
for development time.

future worK
Phylogenetics remains a significant field in both the biological sci-
ences and computing. As biological data becomes more widely 
available with the development of new experimental biology 

techniques, modeling of DNA and proteins will become more precise 
as more prior parameters can be considered for the statistical model. 
Current research (1, 6) includes the application of population-level 
parameters beyond molecular-level parameters in the creation of the 
MCMC model, which has seen limited success. The difficulty now 
lies in the complexity of population-level parameters, some of which 
cannot be easily quantified. Environmental-level parameters will be 
the next step, but until researchers have the computational power to 
simulate an entire environment, this is not possible.

In addition to taking more parameters, MCMC algorithms should 
also be able to output more phylogenetic data than just the predicted 
ancestral sequences and times. Other studies have shown that ex-
tended MCMC algorithms can even assist in taxonomic classifica-
tion, by helping to calculating taxonomic circumscription limits (2). 
These MCMC algorithms not only produce sequence data, but pro-
vide possible limits for species categorization. In the future, MCMC 
algorithms may create a new species classification system, based on 
genetics, as the Linnaeus system of classifying species by only their 
physical characteristics is outdated.
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